International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 3.1, p. 77   | 1 | 2 |

Section 3.1.5.3. Purifying and refolding denatured proteins

S. H. Hughesa and A. M. Stockb*

a National Cancer Institute, Frederick Cancer R&D Center, Frederick, MD 21702-1201, USA, and bCenter for Advanced Biotechnology and Medicine, Howard Hughes Medical Institute and University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854–5627, USA
Correspondence e-mail:  stock@cabm.rutgers.edu

3.1.5.3. Purifying and refolding denatured proteins

| top | pdf |

As we have already discussed, expressing high levels of recombinant prokaryotic or eukaryotic proteins in E. coli can lead to the production of improperly folded material that aggregates to form insoluble inclusion bodies (Marston, 1986[link]; Krueger et al., 1989[link]; Mitraki & King, 1989[link]; Hockney, 1994[link]). Inclusion bodies can usually be recovered relatively easily, following lysis of cells by low-speed centrifugation (5 min at 12 000 g); inclusion bodies are larger than most macromolecular structures found in E. coli and denser than E. coli membranes. Care should be taken to achieve complete lysis, since an intact bacterial cell that remains after lysis will co-sediment with the inclusion bodies. In most (but not all) cases, the inclusion bodies contain the desired recombinant protein in relatively pure form. In such cases, the problem lies not with the purification of the protein, but in finding a proper way to refold it.

Various general procedures for refolding proteins from inclusion bodies have been described (Fischer et al., 1993[link]; Werner et al., 1994[link]; Hofmann et al., 1995[link]; Guise et al., 1996[link]; De Bernardez Clark, 1998[link]), and the literature is filled with examples of specific protocols. The insoluble inclusion bodies are usually solubilized in a powerful chaotropic agent like guanidine hydrochloride or urea. In general, detergents are not recommended. The denaturant is sequentially removed by dilution, dialysis or filtration. Both rapid dilution and slow removal of the denaturant have been used successfully. In most refolding protocols, relatively dilute solutions of the protein are used to avoid protein–protein interactions, and, if necessary, glutathione or some other thiol reagent is included in the buffer to accelerate correct pairing of disulfides. After a refolding procedure, the properly folded soluble protein must be separated from the fraction that did not fold appropriately. Improperly refolded proteins are relatively insoluble and can usually be removed by centrifugation. It is sometimes profitable to try to refold the recovered insoluble material a second time.

Once soluble protein has been obtained, conventional purification procedures may be employed. It should be noted that recovery of soluble protein is not necessarily an indication that the protein exists in a native state. Quantitative assays of protein activity should be used to characterize the protein, if such assays exist. Alternatively, the behaviour of the refolded protein should be critically assessed during subsequent purification steps; an improperly folded protein will be prone to aggregation, will generally give broad and/or trailing peaks during column chromatography and will migrate faster than expected during size-exclusion chromatography. Some proteins are more amenable to refolding than others. As has already been pointed out, if a protein has a complex array of disulfide bonds, it is usually more difficult to refold than a protein without disulfide bonds. Greater success in refolding is generally obtained with proteins composed of single domains than with multidomain proteins.

References

First citation De Bernardez Clark, E. (1998). Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9, 157–163.Google Scholar
First citation Fischer, B., Sumner, I. & Goodenough, P. (1993). Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol. Bioeng. 41, 3–13.Google Scholar
First citation Guise, A. D., West, S. M. & Chaudhuri, J. B. (1996). Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol. Biotechnol. 6, 53–64.Google Scholar
First citation Hockney, R. C. (1994). Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12, 456–463.Google Scholar
First citation Hofmann, A., Tai, M., Wong, W. & Glabe, C. G. (1995). A sparse matrix screen to establish initial conditions for protein renaturation. Anal. Biochem. 230, 8–15.Google Scholar
First citation Krueger, J. K., Kulke, M. H., Schutt, C. & Stock, J. (1989). Protein inclusion body formation and purification. BioPharm, March issue, 40–45.Google Scholar
First citation Marston, F. A. (1986). The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240, 1–12.Google Scholar
First citation Mitraki, A. & King, J. (1989). Protein folding intermediates and inclusion body formation. Biotechnology, 7, 690–697.Google Scholar
First citation Werner, M. H., Clore, G. M., Gronenborn, A. M., Kondoh, A. & Fisher, R. J. (1994). Refolding proteins by gel filtration chromatography. FEBS Lett. 345, 125–130.Google Scholar








































to end of page
to top of page