International Tables for Crystallography (2006). Vol. F, ch. 6.1, pp. 125-132   | 1 | 2 |
doi: 10.1107/97809553602060000665

Chapter 6.1. X-ray sources

Contents

  • 6.1. X-ray sources  (pp. 125-132) | html | pdf | chapter contents |
    • 6.1.1. Overview  (p. 125) | html | pdf |
    • 6.1.2. Generation of X-rays  (pp. 125-127) | html | pdf |
      • 6.1.2.1. Stationary-target X-ray tubes  (p. 125) | html | pdf |
      • 6.1.2.2. Rotating-anode X-ray tubes  (pp. 125-126) | html | pdf |
      • 6.1.2.3. Microfocus X-ray tubes  (p. 126) | html | pdf |
      • 6.1.2.4. Synchrotron-radiation sources  (pp. 126-127) | html | pdf |
    • 6.1.3. Properties of the X-ray beam  (pp. 127-129) | html | pdf |
      • 6.1.3.1. Beam size  (p. 128) | html | pdf |
      • 6.1.3.2. X-ray wavelength  (p. 128) | html | pdf |
      • 6.1.3.3. Spectral composition  (p. 128) | html | pdf |
      • 6.1.3.4. Intensity  (pp. 128-129) | html | pdf |
      • 6.1.3.5. Cross fire  (p. 129) | html | pdf |
      • 6.1.3.6. Beam stability  (p. 129) | html | pdf |
    • 6.1.4. Beam conditioning  (pp. 129-132) | html | pdf |
      • 6.1.4.1. X-ray mirrors  (pp. 129-131) | html | pdf |
      • 6.1.4.2. Focusing collimators for microfocus sources  (p. 131) | html | pdf |
      • 6.1.4.3. Other focusing collimators  (p. 131) | html | pdf |
      • 6.1.4.4. Crystal monochromators  (pp. 131-132) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 6.1.2.1. Section through a sealed X-ray tube  (p. 125) | html | pdf |
      • Fig. 6.1.2.2. Synchrotron radiation emitted by a relativistic electron travelling in a curved trajectory  (p. 126) | html | pdf |
      • Fig. 6.1.2.3. Comparison of the spectra from the storage ring SPEAR  (p. 127) | html | pdf |
      • Fig. 6.1.2.4. Main components of a dedicated electron storage-ring synchrotron-radiation source  (p. 127) | html | pdf |
      • Fig. 6.1.2.5. Electron trajectory within a multipole wiggler or undulator  (p. 127) | html | pdf |
      • Fig. 6.1.2.6. Spectral distribution and critical wavelengths for ( a ) a dipole magnet, ( b ) a wavelength shifter and ( c ) a multipole wiggler at the ESRF  (p. 128) | html | pdf |
      • Fig. 6.1.4.1. Production of a point focus by successive reflections at two orthogonal curved mirrors  (p. 130) | html | pdf |
      • Fig. 6.1.4.2. The `catamegonic' arrangement of Montel (1957), in which two confocal mirrors with orthogonal curvatures lie side-by-side  (p. 130) | html | pdf |
      • Fig. 6.1.4.3. Mirror bender (after Franks, 1955)  (p. 130) | html | pdf |
      • Fig. 6.1.4.4. Triangular mirror bender as described by Lemonnier et al   (p. 130) | html | pdf |
      • Fig. 6.1.4.5. Mirror holder with machined slots for two orthogonal pairs of curved mirrors (after Arndt, Duncumb et al   (p. 130) | html | pdf |
      • Fig. 6.1.4.6. Ellipsoidal mirror for use with a microfocus X-ray tube, where x 1 is ∼15 mm  (p. 131) | html | pdf |
      • Fig. 6.1.4.7. A polycapillary collimator (after Bly & Gibson, 1996)  (p. 131) | html | pdf |
    • Tables
      • Table 6.1.2.1. Standard X-ray tube inserts  (p. 125) | html | pdf |