International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 6.2, pp. 133-142   | 1 | 2 |
https://doi.org/10.1107/97809553602060000666

Chapter 6.2. Neutron sources

B. P. Schoenborna* and R. Knottb

a Life Sciences Division M888, University of California, Los Alamos National Laboratory, Los Alamos, NM 8745, USA, and bSmall Angle Scattering Facility, Australian Nuclear Science & Technology Organisation, Physics Division, PMB 1 Menai NSW 2234, Australia
Correspondence e-mail:  schoenborn@lanl.gov

References

First citation Ageron, P. (1989). Cold neutron sources at ILL. Nucl. Instrum. Methods A, 284, 197–199.Google Scholar
First citation Akcasu, A. Z., Lellouche, G. S. & Shotkin, L. M. (1971). Mathematical methods in nuclear reactor dynamics. New York: Academic Press.Google Scholar
First citation Alberi, J., Fischer, J., Radeka, V., Rogers, L. C. & Schoenborn, B. P. (1975). A two-dimensional position-sensitive detector for thermal neutrons. Nucl. Instrum. Methods, 127, 507–523.Google Scholar
First citation Alsmiller, R. G. & Lillie, R. A. (1992). Design calculations for the ANS cold source. Part II. Heating rates. Nucl. Instrum. Methods A, 321, 265–270.Google Scholar
First citation Bacon, G. E. (1962). Neutron diffraction. Oxford University Press.Google Scholar
First citation Böni, P. (1997). Supermirror-based beam devices. Physica B, 234–236, 1038–1043.Google Scholar
First citation Borkowski, C. J. & Kopp, M. K. (1975). Design and properties of position-sensitive proportional counters using resistance-capacitance position encoding. Rev. Sci. Instrum. 46, 951–962.Google Scholar
First citation Carpenter, J. M. (1977). Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Methods, 145, 91–113.Google Scholar
First citation Carpenter, J. M. & Yelon, W. B. (1986). Neutron sources. In Methods of experimental physics, Vol. 23A. New York: Academic Press.Google Scholar
First citation Cipriani, F., Castagna, J.-C., Caustre, L., Wilkinson, C. & Lehmann, M. S. (1997). Large area neutron and X-ray image-plate detectors for macromolecular biology. Nucl. Instrum. Methods A, 392, 471–474.Google Scholar
First citation Clark, C. D., Mitchell, E. W. J., Palmer, D. W. & Wilson, I. H. (1966). The design of a velocity selector for long wavelength neutrons. J. Sci. Instrum. 43, 1–5.Google Scholar
First citation Convert, P. & Forsyth, J. B. (1983). Editors. Position-sensitive detection of thermal neutrons. London: Academic Press.Google Scholar
First citation Copley, J. R. D. (1991). Acceptance diagram analysis of the performance of vertically curved neutron monochromators. Nucl. Instrum. Methods, 301, 191–201.Google Scholar
First citation Copley, J. R. D. & Mildner, D. F. R. (1992). Simulation and analysis of the transmission properties of curved–straight neutron guide systems. Nucl. Sci. Eng. 110, 1–9.Google Scholar
First citation Crawford, R. K. (1992). Position-sensitive detection of slow neutrons – survey of fundamental principles. SPIE, 1737, 210–223.Google Scholar
First citation Ebisawa, T., Achiwa, N., Yamada, S., Akiyoshi, T. & Okamoto, S. (1979). Neutron reflectivities of Ni–Mn and Ni–Ti multilayers for monochromators and supermirrors. J. Nucl. Sci. Technol. 16, 647–659.Google Scholar
First citation Freund, A. K. & Dolling, G. (1995). Devices for neutron beam definition. In International tables for crystallography, Vol. C. Mathematical, physical and chemical tables, edited by A. J. C. Wilson, pp. 375–382. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Glasstone, S. & Sesonske, A. (1994). Nuclear reactor engineering. New York: Chapman and Hall.Google Scholar
First citation Hallsall, M. J. (1995). WIMS – a general purpose code for reactor core analysis. AEA Technology, Vienna.Google Scholar
First citation Harris, P., Lebech, B. & Pedersen, J. S. (1995). The three-dimensional resolution function for small-angle scattering and Laue geometries. J. Appl. Cryst. 28, 209–222.Google Scholar
First citation Hayter, J. B. & Mook, H. A. (1989). Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35–41.Google Scholar
First citation Hjelm, R. (1996). Editor. Proceedings of the workshop on methods for neutron scattering instrumentation design. Lawrence Berkeley National Laboratory, USA.Google Scholar
First citation Hughes, H. G. III (1988). Monte Carlo simulation of the LANSCE target geometry. Proceedings of the tenth international collaboration on advanced neutron sources, p. 455. New York: Institute of Physics.Google Scholar
First citation Jacobé, J., Feltin, D., Rambaud, A., Ratel, F., Gamon, M. & Pernock, J. B. (1983). High pressure 3He multielectrode detectors for neutron localisation. In Position-sensitive detection of thermal neutrons, edited by P. Convert & J. B. Forsyth, pp. 106–119. London: Academic Press.Google Scholar
First citation Jakeman, D. (1966). Physics of nuclear reactors. London: The English Universities Press.Google Scholar
First citation Johnson, M. W. (1986). Editor. Workshop on neutron scattering data analysis. Rutherford Appleton Laboratory, Chilton, England. Bristol: Institute of Physics.Google Scholar
First citation Johnson, M. W. & Stephanou, C. (1978). MCLIB: a library of Monte Carlo subroutines for neutron scattering problems. Report RL-78–090. Science Research Council, Chilton, England.Google Scholar
First citation Knott, R. B., Smith, G. C., Watt, G. & Boldeman, J. B. (1997). A large 2D PSD for thermal neutron detection. Nucl. Instrum. Methods A, 392, 62–67.Google Scholar
First citation Komura, S., Takeda, T., Fujii, H., Toyoshima, Y., Osamura, K., Mochiki, K. & Hasegawa, K. (1983). The 6-meter neutron small-angle scattering spectrometer at KUR. Jpn. J. Appl. Phys. 22, 351–356.Google Scholar
First citation Kostorz, G. (1979). Neutron scattering. Treatise on materials science and technology, Vol. 15. New York: Academic Press.Google Scholar
First citation Krueger, S., Koenig, B. W., Orts, W. J., Berk, N. F., Majkrzak, C. F. & Gawrisch, K. (1996). Neutron reflectivity studies of single lipid bilayers supported on planar substrates. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 205–213. New York: Plenum Press.Google Scholar
First citation Lewis, E. E. & Miller, W. F. (1993). Computational methods of neutron transport. Washington: American Nuclear Society Inc.Google Scholar
First citation Lillie, R. A. & Alsmiller, R. G. (1990). Design calculations for the ANS cold neutron source. Nucl. Instrum. Methods A, 295, 147–154.Google Scholar
First citation Lowde, R. D. (1960). The principles of mechanical neutron-velocity selection. J. Nucl. Energy, 11, 69–80.Google Scholar
First citation Mâaza, M., Farnoux, B., Samuel, F., Sella, C., Wehling, F., Bridou, F., Groos, M., Pardo, B. & Foulet, G. (1993). Reduction of the interfacial diffusion in Ni–Ti neutron-optics multilayers by carburation of the Ni–Ti interfaces. J. Appl. Cryst. 26, 574–582.Google Scholar
First citation Magerl, A. & Wagner, V. (1994). Editors. Proceedings of the workshop on focusing Bragg optics. Nucl. Instrum. Methods A, Vol. 338.Google Scholar
First citation Maier-Leibnitz, H. & Springer, T. (1963). The use of neutron optical devices on beam-hole experiments. J. Nucl. Energy, 17, 217–225.Google Scholar
First citation Majkrzak, C. F. (1991). Polarised neutron reflectometry. Physica B, 173, 75–88.Google Scholar
First citation Mikula, P., Krüger, E., Scherm, R. & Wagner, V. (1990). An elastically bent silicon crystal as a monochromator for thermal neutrons. J. Appl. Cryst. 23, 105–110.Google Scholar
First citation Mildner, D. F. R. & Hammouda, B. (1992). The transmission of curved neutron guides with non-perfect reflectivity. J. Appl. Cryst. 25, 39–45.Google Scholar
First citation Niimura, N., Karasawa, Y., Tanaka, I., Miyahara, J., Takahashi, K., Saito, H., Koizumi, S. & Hidaka, M. (1994). An imaging plate neutron detector. Nucl. Instrum. Methods A, 349, 521–525.Google Scholar
First citation Niimura, N., Minezaki, Y., Nonaka, T., Castagna, J.-C., Cipriani, F., Høghøj, P., Lehmann, M. S. & Wilkinson, C. (1997). Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nature Struct. Biol. 4, 909–914.Google Scholar
First citation Oed, A. (1988). Position-sensitive detector with microstrip anode for electron multiplication with gases. Nucl. Instrum. Methods A, 263, 351–359.Google Scholar
First citation Oed, A. (1995). Properties of micro-strip gas chambers (MSGC) and recent developments. Nucl. Instrum. Methods A, 367, 34–40.Google Scholar
First citation Pedersen, J. S., Posselt, D. & Mortensen, K. (1990). Analytical treatment of the resolution function for small-angle scattering. J. Appl. Cryst. 23, 321–333.Google Scholar
First citation Popovici, M. & Yelon, W. B. (1995). Focusing monochromators for neutron diffraction. J. Neutron Res. 3, 1–26.Google Scholar
First citation Prael, R. E. (1994). A review of the physics models in the LAHET code. Report LA-UR-94-1817. Los Alamos National Laboratory, USA.Google Scholar
First citation Prask, H. J., Rowe, J. M., Rush, J. J. & Schroeder, I. G. (1993). The NIST cold neutron research facility. J. Res. NIST, 98, 1–14.Google Scholar
First citation Pynn, R. (1984). Neutron scattering instrumentation at reactor based installations. Rev. Sci. Instrum. 55, 837–848.Google Scholar
First citation Radeka, V. (1988). Low noise techniques in detectors. Annu. Rev. Nucl. Part. Sci. 38, 217–277.Google Scholar
First citation Radeka, V. & Boie, R. A. (1980). Centroid finding method for position-sensitive detectors. Nucl. Instrum. Methods, 178, 543–554.Google Scholar
First citation Radeka, V., Schaknowski, N. A., Smith, G. C. & Yu, B. (1996). High precision thermal neutron detectors. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 57–67. New York: Plenum Press.Google Scholar
First citation Rausch, C., Bücherl, T., Gähler, R., Seggern, H. & Winnacker, A. (1992). Recent developments in neutron detection. SPIE, 1737, 255–263.Google Scholar
First citation Richter, D. & Springer, T. (1998). A twenty years forward look at neutron scattering facilities in the OECD countries and Russia. OECD Publication. Strasbourg: European Science Foundation.Google Scholar
First citation Riste, T. (1970). Singly bent graphite monochromators for neutrons. Nucl. Instrum. Methods. 86, 1–4.Google Scholar
First citation Russell, G. J., Ferguson, P. D., Pitcher, E. J. & Court, J. D. (1996). Neutronics and the MLNSC spallation target system. In Applications of accelerators in research and industry – proceedings of the 14th international conference, edited by J. L. Duggan and I. L. Morgan. AIP Conference Proceedings, Vol. 392, pp. 361–364.Google Scholar
First citation Sauli, F. (1977). Principles of operation of multiwire proportional and drift chambers. Report CERN-77-09. CERN, Geneva, Switzerland.Google Scholar
First citation Saxena, A. M. & Schoenborn, B. P. (1977). Multilayer neutron monochromators. Acta Cryst. A33, 805–813.Google Scholar
First citation Saxena, A. M. & Schoenborn, B. P. (1988). Multilayer monochromators for neutron spectrometers. Mater. Sci. Forum, 27/28, 313–318.Google Scholar
First citation Schärpf, O. & Anderson, I. S. (1994). The role of surfaces and interfaces in the behaviour of non-polarizing and polarizing supermirrors. Physica B, 198, 203–212.Google Scholar
First citation Schefer, J., Medarde, M., Fischer, S., Thut, R., Koch, M., Fischer, P., Staub, U., Horisberger, M., Bottger, G. & Donni, A. (1996). Sputtering method for improving neutron composite germanium monochromators. Nucl. Instrum. Methods A, 372, 229–232.Google Scholar
First citation Schneider, D. K. & Schoenborn, B. P. (1984). A new neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor. In Neutrons in biology, edited by B. P. Schoenborn, pp. 119–141. New York: Plenum Press.Google Scholar
First citation Schoenborn, B. P. (1992a). Multilayer monochromators and super mirrors for neutron protein crystallography using a quasi Laue technique. SPIE, 1738, 192–199.Google Scholar
First citation Schoenborn, B. P. (1992b). Area detectors for neutron protein crystallography. SPIE, 1737, 235–243.Google Scholar
First citation Schoenborn, B. P. (1996). A protein crystallography station at the Los Alamos Neutron Science Center. Report LA-UR-96-3508, 11–64. Los Alamos National Laboratory, USA.Google Scholar
First citation Schoenborn, B. P., Court, D., Larson, A. C. & Ferguson, P. (1999). Moderator decoupling options for structural biology at spallation neutron sources. J. Neutron Res. 7, 89–106.Google Scholar
First citation Schoenborn, B. P., Saxena, A. M., Stamm, M., Dimmler, G. & Radeka, V. (1985). A neutron spectrometer with a two-dimensional detector for time resolved studies. Aust. J. Phys. 38, 337–351.Google Scholar
First citation Schoenborn, B. P., Schefer, J. & Schneider, D. (1986). The use of wire chambers in structural biology. Nucl. Instrum. Methods A, 252, 180–187.Google Scholar
First citation Sears, V. F. (1983). Theory of multilayer neutron monochromators. Acta Cryst. A39, 601–608.Google Scholar
First citation Sears, V. F. (1989). Neutron optics: an introduction to the theory of neutron optical phenomena and their applications. Oxford series on neutron scattering in condensed matter. New York: Oxford University Press.Google Scholar
First citation Sivia, D. S., Silver, R. N. & Pynn, R. (1990). The Bayesian approach to optimal instrument design. In Neutron scattering data analysis, edited by M. W. Johnson, Institute of Physics Conference Series, Vol. 107, pp. 45–55.Google Scholar
First citation Soodak, H. (1962). Editor. Reactor handbook. New York: Wiley.Google Scholar
First citation Spanier, J. & Gelbard, E. M. (1969). Monte Carlo principles and neutron transport problems. London: Addison-Wesley.Google Scholar
First citation Stamm'ler, R. J. J. & Abbate, M. J. (1983). Methods of steady-state reactor physics in nuclear design. London: Academic Press.Google Scholar
First citation Stuhrmann, H. B. & Nierhaus, K. H. (1996). The determination of the in situ structure by nuclear spin contrast variation. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 397–413. New York: Plenum Press.Google Scholar
First citation Takahashi, K., Tazaki, S., Miyahara, J., Karasawa, Y. & Niimura, N. (1996). Imaging performance of imaging plate neutron detectors. Nucl. Instrum. Methods A, 377, 119–122.Google Scholar
First citation Vellettaz, N., Assaf, J. E. & Oed, A. (1997). Two dimensional gaseous microstrip detector for thermal neutrons. Nucl. Instrum. Methods A, 392, 73–79.Google Scholar
First citation Vogt, T., Passell, L., Cheung, S. & Axe, J. D. (1994). Using wafer stacks as neutron monochromators. Nucl. Instrum. Methods A, 338, 71–77.Google Scholar
First citation Wagner, V., Friedrich, H. & Wille, P. (1992). Performance of a high-tech neutron velocity selector. Physica B, 180–181, 938–940.Google Scholar
First citation Weisman, J. (1983). Editor. Elements of nuclear reactor design. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
First citation Well, A. A. van, de Haan, V. O. & Mildner, D. F. R. (1991). The average number of reflections in a curved neutron guide. Nucl. Instrum. Methods A, 309, 284–286.Google Scholar
First citation West, C. D. (1989). The US advanced neutron source. ICANS X, Los Alamos USA, pp. 643–654.Google Scholar
First citation Wignall, G. D., Christen, D. K. & Ramakrishnan, V. (1988). Instrumental resolution effects in small-angle neutron scattering. J. Appl. Cryst. 21, 438–451.Google Scholar
First citation Williams, M. M. R. (1966). The slowing down and thermalization of neutrons. Amsterdam: North Holland.Google Scholar
First citation Windsor, C. G. (1981). Pulsed neutron scattering. London: Wiley.Google Scholar
First citation Windsor, C. G. (1986). Experimental techniques. In Methods of experimental physics, Vol. 23A. New York, London: Academic Press.Google Scholar