International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 6.2, pp. 135-136   | 1 | 2 |

Section 6.2.1.3.3. Multilayer monochromators and supermirrors

B. P. Schoenborna* and R. Knottb

a Life Sciences Division M888, University of California, Los Alamos National Laboratory, Los Alamos, NM 8745, USA, and bSmall Angle Scattering Facility, Australian Nuclear Science & Technology Organisation, Physics Division, PMB 1 Menai NSW 2234, Australia
Correspondence e-mail:  schoenborn@lanl.gov

6.2.1.3.3. Multilayer monochromators and supermirrors

| top | pdf |

Multilayers are especially useful for preparing a long-wavelength neutron beam from a cold source and for small-angle scattering experiments in which [\Delta \lambda /\lambda] of about 0.1 is acceptable (Schneider & Schoenborn, 1984[link]). Multilayer monochromators are essentially one-dimensional crystals composed of alternating layers of neutron-different materials (e.g. Ni and Ti) deposited on a substrate of low surface roughness. In order to produce multilayers of excellent performance, uniform layers are required with low interface roughness, low interdiffusion between layers and high scattering contrast. Various modifications (e.g. carbonation, partial hydrogenation) to the pure Ni and Ti bilayers improve the performance significantly by fine tuning the layer uniformity and contrast (Mâaza et al., 1993[link]). The minimum practical d-spacing is ~50 Å and a useful upper limit is ~150 Å. Multilayer monochromators have high neutron reflectivity (>0.95 is achievable), and their angular acceptance and bandwidth can be selected to produce a neutron beam of desired characteristics (Saxena & Schoenborn, 1977[link], 1988[link]; Ebisawa et al., 1979[link]; Sears, 1983[link]; Schoenborn, 1992a[link]).

The supermirror, a development of the multilayer monochromator concept, consists of a precise number of layers with graded d-spacing. Such a device enables the simultaneous satisfaction of the Bragg condition for a range of λ and, hence, the transmission of a broader bandwidth (Saxena & Schoenborn, 1988[link]; Hayter & Mook, 1989[link]; Böni, 1997[link]).

Polarizing multilayers and supermirrors (Schärpf & Anderson, 1994[link]) facilitate valuable experimental opportunities, such as nuclear spin contrast variation (Stuhrmann & Nierhaus, 1996[link]) and polarized neutron reflectometry (Majkrzak, 1991[link]; Krueger et al., 1996[link]). Supermirrors consisting of Co and Ti bilayers display high contrast for neutrons with a magnetic moment parallel to the saturation magnetization and very low contrast for the remainder. With suitable modification of the substrate to absorb the antiparallel neutrons, a polarizing supermirror will produce a polarized neutron beam (polarization >90%) by reflection.

References

First citation Böni, P. (1997). Supermirror-based beam devices. Physica B, 234–236, 1038–1043.Google Scholar
First citation Ebisawa, T., Achiwa, N., Yamada, S., Akiyoshi, T. & Okamoto, S. (1979). Neutron reflectivities of Ni–Mn and Ni–Ti multilayers for monochromators and supermirrors. J. Nucl. Sci. Technol. 16, 647–659.Google Scholar
First citation Hayter, J. B. & Mook, H. A. (1989). Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35–41.Google Scholar
First citation Krueger, S., Koenig, B. W., Orts, W. J., Berk, N. F., Majkrzak, C. F. & Gawrisch, K. (1996). Neutron reflectivity studies of single lipid bilayers supported on planar substrates. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 205–213. New York: Plenum Press.Google Scholar
First citation Majkrzak, C. F. (1991). Polarised neutron reflectometry. Physica B, 173, 75–88.Google Scholar
First citation Mâaza, M., Farnoux, B., Samuel, F., Sella, C., Wehling, F., Bridou, F., Groos, M., Pardo, B. & Foulet, G. (1993). Reduction of the interfacial diffusion in Ni–Ti neutron-optics multilayers by carburation of the Ni–Ti interfaces. J. Appl. Cryst. 26, 574–582.Google Scholar
First citation Saxena, A. M. & Schoenborn, B. P. (1977). Multilayer neutron monochromators. Acta Cryst. A33, 805–813.Google Scholar
First citation Saxena, A. M. & Schoenborn, B. P. (1988). Multilayer monochromators for neutron spectrometers. Mater. Sci. Forum, 27/28, 313–318.Google Scholar
First citation Schneider, D. K. & Schoenborn, B. P. (1984). A new neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor. In Neutrons in biology, edited by B. P. Schoenborn, pp. 119–141. New York: Plenum Press.Google Scholar
First citation Schoenborn, B. P. (1992a). Multilayer monochromators and super mirrors for neutron protein crystallography using a quasi Laue technique. SPIE, 1738, 192–199.Google Scholar
First citation Schärpf, O. & Anderson, I. S. (1994). The role of surfaces and interfaces in the behaviour of non-polarizing and polarizing supermirrors. Physica B, 198, 203–212.Google Scholar
First citation Sears, V. F. (1983). Theory of multilayer neutron monochromators. Acta Cryst. A39, 601–608.Google Scholar
First citation Stuhrmann, H. B. & Nierhaus, K. H. (1996). The determination of the in situ structure by nuclear spin contrast variation. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 397–413. New York: Plenum Press.Google Scholar








































to end of page
to top of page