International Tables for Crystallography

Access to online content requires a licence


You have followed a link to material from the 2012 edition of International Tables for Crystallography Volume F. If you would like to update your licence to include this material please contact support@iucr.org. If you have a licence for the 2006 edition of this volume please follow the link below to access material from it:

International Tables for Crystallography (2006). Vol. F, Section 13.4.9
Noncrystallographic symmetry averaging of electron density for molecular-replacement phase refinement and extension
M. G. Rossmann and E. Arnold. International Tables for Crystallography (2012). Vol. F, ch. 13.4, pp. 352-363  [ doi:10.1107/97809553602060000842 ]

Abstract

Noncrystallographic symmetry (NCS) occurs when symmetry operations are true only within a confined envelope, as opposed to being valid throughout the essentially infinite crystal lattice. Computationally, it is useful to define the molecular symmetry with reference to an arbitrary cell (the `h-cell') with the relationship Xn = [Rn]X1 (n = 1, N). Then the assembly of N NCS equivalent objects can be moved into the actual crystal (the `p-cell') using the relationship Y = [E]X. Hence each of the N units can be referred to the reference unit by Yn = [E][Rn]X1. In turn, the N units in the p-cell asymmetric unit can be multiplied by the crystal symmetry to produce the whole unit cell from the reference subunit in the h-cell. Procedures of averaging electron density will require a definition of the envelope either for the reference subunit or the whole of the molecular assembly if the NCS represents a closed point group (`proper' NCS). Averaging beyond the range of the NCS operators means that averaging is between non-equivalent densities. This causes the mean height of the average density to diminish and thus accurately indicates the limits of the NCS envelope. Various symmetry situations are examined, such as averaging subunits within the same crystal lattice (maybe proper symmetry) or between different crystal forms (necessarily improper symmetry). Phase extension is shown to be possible only by small defined increments of resolution after each cycle of averaging and solvent flattening.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The multi-volume series comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.