International Tables for Crystallography (2012). Vol. F, ch. 4.3, pp. 129-139   | 1 | 2 |
doi: 10.1107/97809553602060000814

Chapter 4.3. Application of protein engineering to enhance crystallizability and improve crystal properties

Contents

  • 4.3. Application of protein engineering to enhance crystallizability and improve crystal properties  (pp. 129-139) | html | pdf | chapter contents |
    • 4.3.1. Introduction  (p. 129) | html | pdf |
    • 4.3.2. Microscopic aspects of protein crystallization  (pp. 129-130) | html | pdf |
    • 4.3.3. Engineering proteins with enhanced solubility  (pp. 130-131) | html | pdf |
    • 4.3.4. Optimization of target constructs  (p. 131) | html | pdf |
    • 4.3.5. The use of fusion proteins for crystallization  (pp. 131-132) | html | pdf |
    • 4.3.6. Noncovalent crystallization chaperones  (pp. 132-133) | html | pdf |
    • 4.3.7. Removal of post-translational modifications  (pp. 133-134) | html | pdf |
    • 4.3.8. Stabilization of protein targets  (p. 134) | html | pdf |
    • 4.3.9. Surface-entropy reduction (SER)  (pp. 134-135) | html | pdf |
    • 4.3.10. Improvement of crystal quality  (p. 135) | html | pdf |
    • 4.3.11. Conclusions  (pp. 135-136) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.3.4.1. A domain-trapping strategy to engineer soluble variants of a protein of interest (POI) for crystallization using the split-GFP complementation methodology  (p. 131) | html | pdf |
      • Fig. 4.3.5.1. An example of the use of a fused carrier protein in crystallization: the crystal structure of the RACK1 protein (green) crystallized in fusion with an engineered variant of the maltose-binding protein (MBP; red); the major crystal contacts are mediated by MBP  (p. 132) | html | pdf |
      • Fig. 4.3.6.1. Phage-display-generated Fab fragments as crystallization chaperones: the structure of the KcsA channel in the closed conformation in complex with a synthetic Fab  (p. 133) | html | pdf |
      • Fig. 4.3.9.1. Two examples of proteins crystallized by the surface-entropy reduction (SER) method  (p. 135) | html | pdf |