International Tables for Crystallography

Access to online content requires a licence


You have followed a link to material from the 2012 edition of International Tables for Crystallography Volume F. If you would like to update your licence to include this material please contact support@iucr.org. If you have a licence for the 2006 edition of this volume please follow the link below to access material from it:

International Tables for Crystallography (2006). Vol. F, Section 8.1.7.2
Synchrotron-radiation instrumentation, methods and scientific utilization
J. R. Helliwell. International Tables for Crystallography (2012). Vol. F, ch. 8.1, pp. 189-204  [ doi:10.1107/97809553602060000822 ]

Abstract

X-rays play a pivotal role in macromolecular crystallography, being the probe used to solve protein crystal structures. The scope of the X-ray crystallography method for structure elucidation and refinement has been transformed by synchrotron-radiation (SR) sources; a particular development has been that larger molecular weight structures and complexes have become amenable to study. Small crystals have also become less restricting and are now used routinely. The finding of isomorphous derivatives to solve the crystallographic phase problem has been circumvented in a majority of cases via optimized anomalous scattering; of especial note being the coupling of the use of tunable SR with the harnessing of novel microbiological production of selenomethionine protein variants. Much higher diffraction resolution studies are also now possible. This chapter describes all these scientific applications of SR. It starts with the physics of SR, including storage-ring insertion devices, and the beam characteristics that can be delivered to the sample. The evolution of the machines and detectors has been substantial; small SR-machine emittance, microfocus beams and almost instantly digitized diffraction images make for near-revolutionary changes of capability. Monochromatic beams are also now fully wavelength tunable, providing narrow spectral spread and yet high intensity at the sample. White-beam options are also harnessed for ultra-short single-bunch time-resolution Laue diffraction; sub-nanosecond time resolutions are viable for structure–function studies, which are described in the companion Chapter 8.2 by K. Moffat. New X-ray free electron laser (XFEL) sources are coming online with even higher single pulse fluxes. Upgrades to the third-generation synchrotron-radiation sources such as at the ESRF are approved and will provide nanofocus X-ray beams (extending down to 10 nm).


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The multi-volume series comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.