
5.5. THE USE OF mmCIF ARCHITECTURE FOR PDB DATA MANAGEMENT

5.5.2.3. Supporting other data formats and data delivery
methods

One of the greatest benefits of a dictionary-based informatics
infrastructure is the flexibility that it provides in supporting alter-
native data formats and delivery methods. Because the data and all
of their defining attributes are electronically encoded, translation
between data and dictionary formats can be achieved using light-
weight software filters without loss of any information.

XML provides a particularly good example of the ease with
which data can be converted to and from the mmCIF format.
XML translations of mmCIF data files are currently provided on
the Worldwide PDB ftp site (ftp://ftp.wwpdb.org/pub/pdb/data/
structures/divided/XML/). These XML files use mmCIF dictio-
nary data-item names as XML tags. These files were created
by a translation tool (http://sw-tools.pdb.org/apps/MMCIF-XML-
UTIL/) that translates mmCIF data files to XML in compliance
with an XML schema. The XML schema is similarly software-
translated from the PDB exchange data dictionary.

Other delivery methods such as Corba (http://www.omg.org/cgi-
bin/doc?lifesci/00-02-02) do not require a data format, as data are
exchanged using an application program interface (API). A Corba
API for macromolecular structure (Greer et al., 2002) based on
the content of the mmCIF data dictionary has been approved by
the Object Management Group (OMG). Software tools supporting
this Corba API (OpenMMS, http://openmms.sdsc.edu, and FILM,
http://sw-tools.pdb.org/apps/FILM) take full advantage of the data
dictionary in building the interface definitions and supporting
server on which the API is based (see also Section 5.3.8.2).

5.5.3. Integrated data-processing system: overview

The RCSB PDB data-processing system has been designed to take
full advantage of the features of the mmCIF metadata framework.
The AutoDep Input Tool (ADIT) is an integrated data-processing
system developed to support deposition, data processing and anno-
tation of three-dimensional macromolecular structure data.

This system, which is outlined in Fig. 5.5.3.1, accepts exper-
imental and structural data from a user for deposition. Data are
input in the form of data files or through a web-based form inter-
face. The input data can be validated in a very basic sense for syn-
tax compliance and internal consistency. Other computational val-
idation can also be applied, including checking the input structure
data against a variety of community standard geometrical criteria
and comparing the input experimental data with the derived struc-
ture model. The suite of validation software used within ADIT is
distributed separately (http://sw-tools.pdb.org/apps/VAL/). All of
this validation information is returned to the user as a collection of
HTML reports.

In addition to providing data-validation reports, ADIT also
encodes data in archival data files and loads data into a rela-
tional database. The loading of data into the relational database
is aided by an expert annotator. The ADIT system customizes its
behaviour according to the user’s requirements. One important dis-
tinction is between the behaviour of the interface provided for

Fig. 5.5.3.1. Functional diagram of the ADIT system.

depositing data and that of the interface used for annotating the
data. The depositor is focused only on data collection and provides
the simplest possible presentation of the information to be input.
The annotator sees the detail of all possible data items as well as
the full functionality of the supporting data-processing software
and database system.

Although the ADIT system was originally developed to sup-
port the centralized data deposition and annotation of macromolec-
ular structure data, it is not limited to these particular applica-
tions. Because the architecture of the ADIT system derives the full
scope of information to be processed from a data dictionary, the
system can transparently provide data input and processing func-
tionality for any content domain. This feature has been exploited
in building a data-input tool for the BioSync project (Kuller et
al., 2002). The ADIT system can also be configured in work-
station mode to provide single-user data collection and process-
ing functionality. This version of the ADIT system as well as the
supporting mmCIF parsing and data-management tools are cur-
rently distributed by the RCSB PDB under an open-source licence
(http://sw-tools.pdb.org/apps/ADIT).

5.5.3.1. ADIT: functional description

The basic functions of the ADIT deposition system are shown
in Fig. 5.5.3.2. Users interact with the ADIT system through a
web server. The CGI components of the ADIT system (that is,
functional software components interacting with web input data
through the Common Gateway Interface protocol) dynamically
build the HTML that provides the system user interface. These
CGI components are currently implemented as compiled binaries
from C++ source code.

User data can be provided in the form of data files or as key-
board input. Input files can be accepted in a variety of formats.
ADIT uses a collection of format filters to convert input data to
the data specification defined in a persistent data dictionary. Data
in the form of data files are typically loaded first. Any input data
that are not included in uploaded files can be keyed in by the user.
ADIT builds a set of HTML forms for each category of data to be
input. At any point during an input session, a user may choose to
view or deposit the input data. Users who are depositing data may
also use the data-validation services through the ADIT interface.

Comprehensive data ontologies like the PDB exchange dictio-
nary contain vast numbers of data definitions. A data-input appli-
cation may only need to access a small fraction of these definitions
at any point. To address the problem of selecting only the relevant
set of input data items from a data dictionary ADIT uses a view
database. In addition to defining the scope of the data items to be
edited by the ADIT application, an ADIT data view also stores

Fig. 5.5.3.2. Schematic diagram of ADIT editing, format translation and validation
functions.

541

International Tables for Crystallography (2006). Vol. G, Section 5.5.3.1, pp. 541–542.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch5o5v0001/sec5o5o3o1/


5. APPLICATIONS

Fig. 5.5.3.3. Example ADIT data-input screen.

presentation details that are used in building the HTML input
forms. An important use of the data view is to provide a simple
and intuitive presentation of information for novice users which
disguises the complex details of a data dictionary.

Fig. 5.5.3.3 shows an example ADIT editing screen for the crys-
tallographic unit cell. The data dictionary category containing this
information is named CELL, and the length of the first cell axis
is defined in the dictionary as _cell.length_a (Fig. 5.5.2.2b). In
this case, the data view has substituted Unit Cell and Length a for
the dictionary data names. Although this example is simple, some
dictionary data names are as long as 75 characters, and in these
instances the ability to display a simpler name is essential.

Precise dictionary definitions and examples obtained from the
data dictionary are accessible from the ADIT interface through
buttons next to each data item. ADIT makes full use of the dic-
tionary specification in data-input operations. Data items defined
to assume only specific values have pulldown menus or selection
boxes. Data type and range restrictions are checked when data
are input and diagnostics are displayed to the user if errors are
detected.

For performance reasons, the data dictionary is converted from
its tabular text structure to an object representation using CIFOBJ.
The class supporting the object representation provides efficient
access functions to all of the data dictionary attributes. A dictio-
nary loader is used to check the consistency of the data dictionary
and to load the object representation from the text form of the data
dictionary.

Any dictionary that complies with the dictionary description
language (DDL2) can be loaded and used by ADIT. All ADIT
software components gain their knowledge of the input data from
the data dictionary and any associated data views. Consequently,
ADIT can be tailored for use in virtually any data-input and data-
processing application.

5.5.3.2. Generalized database support

In addition to the data editing and processing functions,
ADIT also supports a versatile database loader (mmCIF Loader;
http://sw-tools.pdb.org/apps/MMCIF-LOADER) that builds data-
base schemata and extracts the processed data required to load

Fig. 5.5.3.4. Schematic diagram of ADIT database loading functions.

database instances. The relation of the database loader to the cen-
tral components of the ADIT system is shown in Fig. 5.5.3.4.

Schemata are defined in a metadata repository that is accessed
by the loader application. In the simplest case, a schema can be
constructed that is modelled directly from the data dictionary.
Since the data model underlying the dictionary description lan-
guage used to build ADIT data dictionaries is essentially relational,
mapping a data dictionary specification to a relational schema is
straightforward.

In other cases, a mapping is required between the target schema
and the data dictionary specification. This mapping is encoded
in the schema metadata repository. The database loader uses this
mapping information to extract items from data files and translate
these data into a form that can be loaded into the target database
schema. The definition of the mapping operation can include:
selection operations with equijoin constraints (e.g. the value of
_entity.type where _entity.id = 1), aggregation (e.g. count,
sum, average), collapse (e.g. vector to string), type conversions and
existence tests.

Schema definitions are converted by the database loader into
SQL instructions that create the defined tables and indices. Load-
able data are produced either as SQL insert/update instructions or
in the more efficient table copy formats used by popular database
engines (i.e. DB2, Sybase, Oracle and MySQL). Loadable data can
also be produced in XML.

5.5.3.3. Building a structure-determination data pipeline

One goal of high-throughput structural genomics is the auto-
matic capture of all the details of each step in the process of
structure determination. Fig. 5.5.3.5 shows a simplified structure-
determination data pipeline. The essential details of each pipeline
step are extracted and later assembled to make a data file for
PDB deposition. The RCSB PDB data-processing infrastructure
has been developed in anticipation of a data pipeline in which
automated deposition would be the terminal step. The dictionary
technology and software tools developed by the RCSB PDB to
process and manage mmCIF data can be reused to provide the
data-handling operations required to build the pipeline.

Dictionary definitions have been carefully developed to describe
the details of each step in the structure-determination pipeline.
These data items are typically accessible in electronic form after
each program step. The information is either exported directly
in mmCIF format or is printed in a program output file. To
deal with the latter case, a utility program, PDB EXTRACT
(http://sw-tools.pdb.org/apps/PDB EXTRACT), has been devel-
oped to parse program output files and extract key data values. In
either case, the results of this incremental extraction of data from
each program step must be merged to build a complete mmCIF

542 references

http://it.iucr.org/Ga/ch5o5v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


