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Preface

International Tables for Crystallography started life in in 1935 as
a two-volume set entitled Internationale Tabellen zur Bestim-
mung von Kristallstrukturen, with C. Hermann as editor. We are
now in the third series, with eight volumes covering all aspects
of crystallography from symmetry to macromolecular crystal-
lography. However, there has always been one glaring omission
and one that has become increasingly serious: powder diffraction.
This is odd: powder crystallography started as early as 1916 with
the seminal work of Debye and Scherrer, and has grown to
include quantitative and semi-quantitative analysis, structure
solution and refinement, two-dimensional data, comprehensive
databases, clustering, and microstructural properties, and is
applied to a wide range of problems of both academic and
industrial interest. Articles in the International Union of Crys-
tallography’s monthly Journal of Applied Crystallography are
dominated by powder-diffraction papers. In terms of instru-
mentation, there are more powder diffractometers (~10 000) in
use worldwide than any other comparable diffraction instrument.
There have also been rapid advances in radiation sources and
detectors, and major developments in software, computing power
and visualization tools, all of which have made what was once
cutting-edge science commonplace.

The methodology that has done more than anything to trans-
form the field treats the measured powder-diffraction data in a
comparable way to single-crystal data (albeit with more restric-
tive conditions) and is generally known as Rietveld refinement.
This method will be found everywhere in this volume and was
developed in the 1960s by Bert Loopstra (who came up with the
concept), Bob van Laar (who worked out the mathematics) and
Hugo Rietveld (who wrote the first computer program for it), as
discussed in a recent article by van Laar & Schenk [Acta Cryst.
(2018), A74, 88-92].

The field has not been devoid of books: there are excellent
books edited by Dinnebier and Billinge [Powder Diffraction
Theory and Practice (2008), Cambridge: Royal Society of
Chemistry], Clearfield, Reibenspies and Bhuvanesh [Principles
and Applications of Powder Diffraction (2008), Oxford: Wiley]
and Mittemeijer and Welzel [Modern Diffraction Methods (2013),
Weinheim: Wiley-VCH]. These, however, are not completely

comprehensive and the need for a volume of International Tables
dedicated to powder diffraction has become increasingly urgent.

So here it is. As if to emphasize the scale and diversity of
the topic, it is one of the larger volumes of International Tables
with over 900 pages and 54 chapters. The first part is devoted to
basic diffraction theory as applied to powder samples, followed
by parts on instrumentation and sample preparation, metho-
dology, structure determination, defects, texture and micro-
structure, and software, and concluding with descriptions of
applications over a wide variety of disciplines ranging from
ceramics to pharmaceuticals. Even a volume of this size cannot be
wholly comprehensive, but the editors hope that it covers a wide
range of topics that will be relevant and of interest to most
powder diffractionists. We plan to include yet more topics in a
second edition.

The volume is intended primarily to be a practical one — when
you have a problem in powder analysis this should be the first
book you reach for. To this end, the data for many of the
examples discussed in the text can be downloaded from https:/
it.iucr.org, so that readers can try the examples for themselves.
We have not (yet) included step-by-step instructions on how to
process the data; perhaps that will come in the future. The
chapter on software gives information on how to obtain the
necessary programs.

A word is needed about notation. A field as diverse as powder
diffraction does not have a uniform notation. Texture and stress,
for example, use a different nomenclature to structure solution.
Our conclusion was that if we were to attempt to impose a
uniform notation throughout the volume, it would have made it
very difficult to link the chapters to the existing literature. We
have to live with diversity.

An enterprise such as this has been a large undertaking, and
we thank the authors for their patience. It is important to
acknowledge the role of the staff at the IUCr offices in Chester,
especially Nicola Ashcroft, Simon Glynn and Peter Strickland.
We are very grateful for all their hard work.

CHris GILMORE, JIM KADUK AND HENK SCHENK
Editors, International Tables for Crystallography Volume H
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2. INSTRUMENTATION AND SAMPLE PREPARATION

(2006), Fewster (2003), Bowen & Tanner (1998), Jenkins &
Snyder (1996), Klug & Alexander (1974), and Peiser et al. (1955).
An extensive discussion of the principles of combining X-ray
optics to optimally suit a wide range of different powder
diffraction as well as thin-film applications has been given in the
textbook by Fewster (2003).

2.1.6.3.1. Absorptive X-ray optics
2.1.6.3.1.1. Apertures

The simplest way of beam conditioning is to place apertures
such as slits (line focus) or pinholes (point focus) into the incident
and/or diffracted beam to control beam divergence and shape,
and to reduce unwanted scattering from air or any beam-path
components. Apertures are ‘shadow-casting’ optics and thus
cannot increase flux density. Reducing beam divergence and
beam dimensions by means of apertures invariably results in a
loss of intensity that is inversely proportional to the slit aperture.

The principles are shown in Fig. 2.1.14. The divergence of a
beam is established by the dimensions of the focal spot as well as
the aperture and the distance of the aperture from the source
(Fig. 2.1.144a). The divergence in the diffraction plane is usually
called ‘equatorial divergence’ and the divergence in the axial
direction ‘axial divergence’. Apertures can be of the plug-in type
requiring manual changes of the aperture to obtain different
divergence angles, or — usually only for equatorial divergence slits
— motorized. Motorized slits are mostly used in the Bragg—
Brentano geometry to limit equatorial divergence, which can be
arbitrarily chosen and either be kept constant to keep the
diffracting specimen volume constant (as is invariably the case
with plug-in slits), or varied as a function of 26 to keep the
illuminated specimen length constant. Typical aperture angles
range from 0.1-1".

To provide additional collimation, a second aperture may be
placed at some distance away from the first (Fig. 2.1.14b). When
using the same aperture, an almost-parallel beam may be
obtained from a divergent beam at the cost of high intensity
losses. A third aperture is often used to reduce scattering by the
second slit. In laboratory X-ray diffractometers dedicated for
SAXS analysis such collimation systems may reach lengths of
more than 1 m.

Another way to parallelize radiation is to use a parallel-plate
collimator (PPC), which is manufactured from sets of parallel,
equally spaced thin metal plates, as shown in Fig. 2.1.14(c). Each
pair of neighbouring plates works like a double-aperture
arrangement as shown in Fig. 2.1.14(b). In contrast to simple slits
and pinholes, PPCs do not change the shape of the beam. PPCs
arranged parallel to the diffraction plane are usually called
‘Soller slits’ and are used to control axial divergence. Such
devices can be used for focusing as well as parallel-beam
geometries with typical aperture angles ranging from 1-5°. Soller
slits are usually mounted on both the incident- and diffracted-
beam sides of the specimen. PPCs arranged parallel to the
diffraction plane are specifically used in parallel-beam geome-
tries to minimize equatorial beam divergence, with typical aper-
ture angles ranging from 0.1-0.5".

The ways in which the diffracted beam can be conditioned are
limited when employing one- or two-dimensional detectors. A
particular issue related to these types of detectors is unwanted
scattering from air or any beam-path components. Ideally, a
closed, evacuated or He-flushed beam path will be used, but this
is often not feasible owing to collision issues. For smaller detec-
tors it is possible to place the anti-scatter aperture closer to the
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Figure 2.1.14
Apertures used for beam collimation. «: divergence angle, f: virtual
focus. (@) Single slit or pinhole, (b) parallelization through double slits or
pinholes, (¢) parallelization through a parallel-plate collimator, (d) a
radial plate collimator.

specimen surface. Alternatively, a knife edge may be placed on
top of the specimen. As knife edges may interfere with divergent
beams at higher 26 angles, it is necessary to move them away from
the specimen at higher 26 angles. Another possibility, limited to
one-dimensional detectors, is to use radial Soller slits as shown in
Fig. 2.1.14(d).

2.1.6.3.1.2. Metal filters

Metal filters are the most frequently used devices for mono-
chromatization of X-rays in laboratory diffractometers. Metal
filters represent single-band bandpass devices where mono-
chromatization is based on the K absorption edge of the filter
material to selectively allow transmission of the Ko characteristic
lines while filtering white radiation, Kf radiation (hence they are
frequently known as ‘Kp filters’), and other characteristic lines.

A properly selected metal filter has its K absorption edge right
between the energies of the Ko and K characteristic lines of the
source. As a rule of thumb, this is achieved by choosing an
element just one atomic number less than the X-ray source target
material in the periodic table. For heavy target materials such as



2.3. NEUTRON POWDER DIFFRACTION

Figure 2.3.26
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(a) Exterior and (b) interior of the standard ILL liquid-helium cryostat for cooling samples in the range 1.8-295 K. An internal heater allows samples
to be studied without interruption from 1.8-430 K. Reproduced with permission from the ILL.

cylindrical sections that allow ready transmission of neutrons
but preserve the vacuum and exclude radiant heat from
the outside world. Liquid-helium cryostats can generally attain
base temperatures of 4.2 K (He alone) or 1.9 K if pumped.
Liquid-nitrogen cryostats are limited to 77 K. A second type of
low-temperature device is the closed-cycle He refrigerator,
commonly referred to by the trade name Displex. These are
more compact than a liquid-helium cryostat and do not
require refilling. Depending on the number of stages and internal
design, refrigerators with base temperatures as low as 4 K are
available.

Samples are typically first cooled to base temperature and then
studied at the chosen sequence of increasing temperatures. This is
achieved through a small electric resistance heater and control
system. As heat transfer to and from the sample is deliberately
poor in these devices, sufficient time should be allowed for the
(often large) sample to reach thermal equilibrium before
recording its neutron-diffraction pattern. It is worth noting that
the attainment of thermal equilibrium does not guarantee that
the sample has attained thermodynamic equilibrium. Some phase
transitions are notoriously slow, for example the ordering of
hydrogen (or deuterium) in Pd metal at 55 K and 75 K, which can
take up to a month (Kennedy et al., 1995; Wu et al., 1996), or the
ordering of Cin TiC, (0.6 < x < 0.9) around 973 K, which can take
a week to complete (Moisy-Maurice et al., 1982; Tashmetov et al.,
2002).

Raising samples to above ambient temperature is, for X-ray
diffraction, the subject of a separate chapter (Chapter 2.6);
however, neutron-diffraction high-temperature devices are
somewhat different. Most commonly used and most versatile is

97

the foil element resistance furnace, in which Cu bus bars transfer
electric current to a cylindrical metal foil which heats up as a
result of its electrical resistance. Foil elements are typically 30—
60 mm in diameter and up to 200 or 250 mm long so as to provide
a long hot zone of uniform temperature within the furnace. The
sample is located, via a sample stick from above or occasionally
via a pedestal support from below, in the centre of the foil heating
element, ensuring that it is uniformly bathed in radiant heat.
Concentric metal-foil heat shields greatly reduce heat loss to the
exterior by radiation, while convective losses are avoided by
evacuating the interior of the furnace to ~10~> mbar. Metals for
manufacture of the foil elements include V, which has almost no
coherent diffraction pattern and can operate continuously up to
1173 K or intermittently to 1273 K. For temperatures above this,
progressively more refractory metals are chosen such as Nb
(<1773 K), Ta (<2473 K) or W (2773 K). These materials will
contribute some small diffraction peaks to the observed patterns,
which requires the recording of reference patterns from the
empty furnace before commencing. Owing to the internal
vacuum, some types of sample are at risk of subliming, decom-
posing or disproportioning during the experiment. In such cases,
sample cans that extend outside the hot zone, where they can be
coupled to a gas-handling system and filled with an internal
atmosphere of air, an inert gas or a reactive gas of interest as
required, are used.

Alternatives to foil furnaces include variations of the wire-
wound laboratory furnace with a split winding and reduced
insulating material in the neutron beam path, Peltier devices, hot-
air blowers and induction heaters. The first three of these are
discussed by Kisi & Howard (2008).



2.5. TWO-DIMENSIONAL POWDER DIFFRACTION

where F(x, y) is the flux (in photons s ') intercepted by the pixel
and B is the brightness of the source (in photons s~ mrad?) or
scattering from the sample. The ratio of the flux in pixel P(x, y) to
that in the centre pixel P(0, 0) is then given as

F(x,y) D? B D?

R (D + x2 + y2)3/2

FO0 - B (2.5.20)

= cos3¢,

where ¢ is the angle between the X-rays to the pixel P(x, y) and
the line from S to the detector in perpendicular direction. It can
be seen that the greater the sample-to-detector distance, the
smaller the difference between the centre pixel and the edge
pixel in terms of the flux from the homogeneous source. This is
the main reason why a data frame collected at a short sample-to-
detector distance has a higher contrast between the edge and
centre than one collected at a long sample-to-detector distance.

2.5.3.2.2. Spatial resolution of area detectors

In a 2D diffraction frame, each pixel contains the X-ray
intensity collected by the detector corresponding to the pixel
element. The pixel size of a 2D detector can be determined by
or related to the actual feature sizes of the detector structure,
or artificially determined by the readout electronics or data-
acquisition software. Many detector techniques allow multiple
settings for variable pixel size, for instance a frame of 2048 x
2048 pixels or 512 x 512 pixels. Then the pixel size in 512 mode is
16 (4 x 4) times that of a pixel in 2048 mode. The pixel size of a
2D detector determines the space between two adjacent pixels
and also the minimum angular steps in the diffraction data,
therefore the pixel size is also referred to as pixel resolution.

The pixel size does not necessarily represent the true spatial
resolution or the angular resolution of the detector. The resolving
power of a 2D detector is also limited by its point-spread function
(PSF) (Bourgeois et al., 1994). The PSF is the two-dimensional
response of a 2D detector to a parallel point beam smaller than
one pixel. When the sharp parallel point beam strikes the
detector, not only does the pixel directly hit by the beam record
counts, but the surrounding pixels may also record some counts.
The phenomenon is observed as if the point beam has spread
over a certain region adjacent to the pixel. In other words, the
PSF gives a mapping of the probability density that an X-ray
photon is recorded by a pixel in the vicinity of the point where the
X-ray beam hits the detector. Therefore, the PSF is also referred
to as the spatial redistribution function. Fig. 2.5.12(a) shows the
PSF produced from a parallel point beam. A plane at half
the maximum intensity defines a cross-sectional region within the
PSF. The FWHM can be measured at any direction crossing the
centroid of the cross section. Generally, the PSF is isotropic, so
the FWHMs measured in any direction should be the same.

Measuring the PSF directly by using a small parallel point
beam is difficult because the small PSF spot covers a few pixels
and it is hard to establish the distribution profile. Instead, the
line-spread function (LSF) can be measured with a sharp line
beam from a narrow slit (Ponchut, 2006). Fig. 2.5.12(b) is the
intensity profile of the image from a sharp line beam. The LSF
can be obtained by integrating the image from the line beam
along the direction of the line. The FWHM of the integrated
profile can be used to describe the LSF. Theoretically, LSF and
PSF profiles are not equivalent, but in practice they are not
distinguished and may be referenced by the detector specification
interchangeably. For accurate LSF measurement, the line beam is
intentionally positioned with a tilt angle from the orthogonal
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(b)
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Figure 2.5.12
(a) Point-spread function (PSF) from a parallel point beam; () line-
spread function (LSF) from a sharp line beam.

direction of the pixel array so that the LSF can have smaller steps
in the integrated profile (Fujita et al., 1992).

The RMS (root-mean-square) of the distribution of counts is
another parameter often used to describe the PSF. The normal
distribution, also called the Gaussian distribution, is the most
common shape of a PSE. The RMS of a Gaussian distribution is
its standard deviation, o. Therefore, the FWHM and RMS have
the following relation, assuming that the PSF has a Gaussian
distribution:

FWHM = 2[—21n(1/2)]"’RMS = 2.3548 x RMS.  (2.5.21)

The values of the FWHM and RMS are significantly different, so
it is important to be precise about which parameter is used when
the value is given for a PSE.

For most area detectors, the pixel size is smaller than the
FWHM of the PSF. The pixel size should be small enough that at
least a 50% drop in counts from the centre of the PSF can be
observed by the pixel adjacent to the centre pixel. In practice, an
FWHM of 3 to 6 times the pixel size is a reasonable choice if use
of a smaller pixel does not have other detrimental effects. A
further reduction in pixel size does not necessarily improve the
resolution. Some 2D detectors, such as pixel-array detectors, can
achieve a single-pixel PSF. In this case, the spatial resolution is
determined by the pixel size.

2.5.3.2.3. Detective quantum efficiency and energy range

The detective quantum efficiency (DQE), also referred to as
the detector quantum efficiency or quantum counting efficiency,
is measured by the percentage of incident photons that are
converted by the detector into electrons that constitute a
measurable signal. For an ideal detector, in which every X-ray
photon is converted to a detectable signal without additional
noise added, the DQE is 100%. The DQE of a real detector is less
than 100% because not every incident X-ray photon is detected,
and because there is always some detector noise. The DQE is a
parameter defined as the square of the ratio of the output and
input signal-to-noise ratios (SNRs) (Stanton ef al., 1992):

(/N )
POE= ((S/N)m> |

The DQE of a detector is affected by many variables, for
example the X-ray photon energy and the counting rate. The
dependence of the DQE on the X-ray photon energy defines the

(2.5.22)



2.8. POWDER DIFFRACTION IN ELECTRIC AND MAGNETIC FIELDS
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Figure 2.8.15

The observed Bragg reflection 100 (open circles) under an applied field of
(a)0T,(b)2Tand (c)4 Tat42Kand (d) 0T, (¢) 2 Tand (f) 4 Tat 16 K
(taken from Yusuf et al., 2013). Copyright IOP Publishing. Reproduced
with permission. All rights reserved.

narrow temperature range a macroscopic polar vector leads to a
multiferroic behaviour. As this study was based on single-crystal
neutron measurements, no further details are given here.
Frustrated triangular-lattice Ising antiferromagnets have degen-
erate magnetic ground states, which give rise to very complex
magnetic structures. As there are only small differences in the
competing exchange interaction in such frustrated triangular-
lattice compounds, a sequence of phase transitions is introduced
by changes in temperature or magnetic field. The compound
Caz;Co,0¢ is another example of a frustrated system. Field-
dependent powder diffraction patterns were reported for the
doped system Ca;Co;gFe;,0O¢ by Yusuf er al (2013). They
distinguished the short-range magnetic order (SRO), reflected in
the half-width of the Bragg reflections (Fig. 2.8.15), from the
long-range order as given by the Bragg positions. They stated that
even under magnetic fields up to 4 T the broadening of Bragg
reflections indicates the persistence of SRO. In a field of 2 T, the
observed change in the structure from incommensurate to
commensurate indicates a reduction of spin frustration. In fields
of 4T, a ferrimagnetic system is introduced, followed by a
ferromagnetic one above 5 T.

2.8.3.3.2.2. Manganite systems

Like the vanadates, in the class of rare-earth manganites of the
type RMn,Os successive magnetic phase transitions between
commensurate (CO) and incommensurate phases (ICP) can
occur. Intensive investigations have been undertaken to under-
stand the relationship between their magnetic and dielectric
properties. The spontaneous electric polarization is induced by
a magnetic transition. Thus the primary order parameter is
magnetic rather than structural. Among the rare-earth
compounds, those containing Nd or an element lighter than Nd
do not exhibit ferroelectricity. In all these materials a broken
magnetic symmetry at lower temperatures leads to a polar
symmetry group. In addition, a cycloidal component indicates a
common underlying mechanism. The Mn** and Mn** ions are
fully charge-ordered. Neutron diffraction studies of these phases
have been performed by Radaelli & Chapon (2008), who also
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Figure 2.8.16

Time-of-flight diffraction patterns of YMn,Os at 1.6 K under magnetic
fields between 0 and 8T (taken from Radaelli & Chapon, 2008).
Copyright IOP Publishing. Reproduced with permission. All rights
reserved.

analysed the possible exchange pathways. In TbMn,Os the
H-T phase diagram of the commensurate-low-temperature—
incommensurate (CO-LT-ICP) magnetic transitions shows an
upward jump in the transition temperature from ~25 K at zero
field to 27 K at 9 T. The low-temperature ICP phase is stabilized
under an external field for TbMn,Os and the dielectric constant is
enhanced. It was concluded that Tb and Mn order independently,
implying the absence of coupling terms between them. Strong
support for this suggestion was provided by an in-field neutron
study on the analogue YMn,Os. Neither the positions nor the
intensities of the magnetic Bragg reflections were affected by the
magnetic field (Fig. 2.8.16). The magnetic low-temperature ICP
phase in the Tb compound was stabilized under a magnetic field.
This is in contrast to observations on HoMn,Os by Kimura et al.
(2007), using single crystals. In both cases, however, the neutron
data correlate directly with the results obtained by dielectric
measurements under a magnetic field. The difference in the
behaviours is thus confirmed. The two studies also reveal
different magnetic order at low temperatures. The same magnetic
sequence at low temperatures as for Tb was observed in YMn,Os,
which does not contain a magnetic rare-earth element. Under
fields up to 8 T the positions and the intensities of the magnetic
Bragg reflections remained unchanged, showing that the anti-
ferromagnetic structure of the manganese sublattice is extremely
stable. As in the vanadates, the main reason for the sequence of
magnetic structures is frustration of the manganese spins.
Without going too deeply into the details of the different
exchange pathways and orbital occupancies, one factor behind
this behaviour is the Jahn-Teller effect of the Mn>* ion, which
is also relevant in the multiferroic TbMnO; as part of the
RMnOj; family (Kimura et al, 2003). Another feature often
found in multiferroic systems is the small ferromagnetic
component caused by small spin canting due to Dzyaloshinskii—
Moriya interactions. This property strongly influences the low-
temperature magnetism in RMn,Os (Kimura et al., 2009).

2.8.3.3.3. Additional systems and scattering techniques

Information about the anisotropy of the local magnetic
susceptibility at different magnetic sites has been extracted from
diffraction patterns for a Tb,Sn,O, powder measured using
polarized neutrons under magnetic fields of 1 and 5 T (Gukasov
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Figure 2.10.26

Effect of preferential orientation on data from top-loaded wollastonite
compared with the calculated pattern from the literature wollastonite-
1A structure (Ohashi, 1984).
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Figure 2.10.27

Rietveld refinement fit to the literature wollastonite-1A structure
(Ohashi, 1984) with data from a 0.3 mm capillary with no orientation
corrections.
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Figure 2.10.28

Rietveld refinement fit to the literature wollastonite-1A structure
(Ohashi, 1984) with data from a 0.2 mm capillary with no orientation
corrections.

intact while filling the capillary (Fig. 2.10.23). Fig. 2.10.24 gives a
summary of the effectiveness of the different sample-preparation
techniques for this particular mica sample in terms of the ratio of
the integrated intensities of the 001 and 200 reflections. The
spray-dried sample with careful top loading can produce a
pattern practically equivalent to the capillary data set.

Plates are not the only problematic morphology. Needle-
shaped crystallites such as those exhibited by wollastonite (Fig.
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Figure 2.10.29
The effect of surface roughness on the intensity compared to that of a
bulk copper specimen. Data from Suortti et al. (1972).

2.10.25) and some organic compounds can also show significant
problems when top-loaded. In fact, lath-like crystallites such as
wollastonite can orient in two directions at the same time, so the
behaviour can be more complicated than that of materials with
plate-like morphology (see Figs 2.10.26, 2.10.27 and 2.10.28).

2.10.1.3. Absorption (surface roughness), microabsorption and
extinction

Absorption, microabsorption and extinction effects all alter
peak intensities, although particularly low absorption (e.g. from
organics) can give rise to sample transparency in reflection
geometry (as discussed in the section on the choice of sample
mounting), where a peak shift and change in profiles can occur.
Microabsorption and extinction solely affect the peak intensities.

Microabsorption (also known as absorption contrast) and
extinction are effects that complicate quantitative phase analysis.
They are both still related to size — particles in the case of
microabsorption and crystallites in the case of extinction.

2.10.1.3.1. Absorption (surface roughness)

Absorption is an obvious issue when using capillaries in
transmission (a convenient calculator is available on the 11-BM
web site, http://11bm.xray.aps.anl.gov), but absorption can also
affect data obtained in reflection using Bragg-Brentano
geometry through the mechanism commonly described as
‘surface roughness’. In essence, the increasing packing density
with depth leads to lower intensities at low diffraction angles,
leading to anomalously low or negative displacement parameters
(much as absorption does in capillaries). There are two compo-
nents to the effect (Fig. 2.10.29, Suortti, 1972). The constant
decrease in intensity is generally incorporated into the refined
scale factor. The angle-dependent portion becomes more signif-
icant as the packing density is reduced.

The effect is greatest with strongly absorbing materials
analysed in reflection geometry, so care should be taken to
produce a sample with a smooth surface and uniform density
where possible. An example is provided by the patterns (Fig.
2.10.30) of a commercial cobalt silicate (which turned out to
consist of a mixture of phases). A pattern from a slurry deposited
on a zero-background cell — a technique useful for small samples,
but which produces a rough surface — yielded significantly lower



3.7. CRYSTALLOGRAPHIC DATABASES
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The results of applying a commercial search/match program (Jade 9.5; Materials Data,
2012) to the (background-subtracted, Ko,-stripped) powder pattern of a butane-oxidation
catalyst. The first three patterns in the hit list had equivalent figures of merit. The PDF
entries 00-050-0380 and 04-009-2740 had Star quality marks and 04-009-2740 contained the
atomic coordinates necessary for a Rietveld refinement. Additional peaks are apparent.
The phases that give rise to them were identified using the native capabilities of the Powder
Diffraction File.
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Figure 3.7.5

Comparison of the low-quality experimental PDF entry 00-047-0967 with the high-quality
calculated pattern 01-074-2749 located by searching the experimental pattern against the
rest of the PDF. The similarity in patterns and chemistry demonstrated that the two phases
were the same and that the coordinates used to calculate entry 01-074-2749 could be used in
a Rietveld refinement of a butane-oxidation catalyst.
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Figure 3.7.6
The four crystalline phases identified in a butane-oxidation catalyst.
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3.7.2.4.4. Isocracker sludge

An isocracker is a refinery unit which simul-
taneously carries out cracking and isomerization
reactions to produce more high-octane gasoline.
A Dblack deposit isolated from such a unit
was surprisingly crystalline (Fig. 3.7.9; files
NALK157.gsas, NALK157.raw and padv.prm).
It was easy to identify small concentrations of
elemental sulfur, pyrrhotite-4M (now called
pyrrhotite-4C), haematite, lepidocrocite and
dolomite, but the major peaks did not match
well those of any entry in the PDF.

It seemed likely that a mineral-related phase
would serve as a structural prototype for an
apparently new phase, so two separate searches
for mineral-related phases with one of their
three strongest peaks in the d-spacing ranges
7.09 £ 0.03 and 5.57 & 0.03 A were combined.
The two hits in the search list were both uranium
minerals. These seemed unlikely in a refinery
deposit(!). Widening the search ranges to 7.09 £
0.10 and 557 + 0.07 A yielded rasvumite,
KFe,S; (PDF entry 00-033-1018), as the second
entry in the hit list.

The fit to the major peaks in the deposit was
reasonable, but there should not be any potas-
sium in a refinery deposit and none was detected
in a bulk chemical analysis. When the jar
containing the deposit was opened, it smelled
strongly of ammonia. Ammonium and potas-
sium ions are about the same size and often form
isostructural compounds. The infrared spectrum
of the deposit was dominated by bands of
ammonium ions.

The potassium in the structure of rasvumite
(PDF entry 01-083-1322, used as a reference)
was replaced by nitrogen. Analysis of potential
hydrogen-bonding interactions yielded approx-
imate hydrogen positions in the ammonium ion.
These positions were refined using a density-
functional geometry optimization. This model
yielded a satisfactory Rietveld refinement
(Fig. 3.7.10) and the quantitative analysis
457 (2) wt% (NHy)Fe,S;, 12.8 (4) wt%  Sg,
22.0 (6) wt% lepidocrocite (y-FeOOH),
5.5 (5) wt% haematite (a-Fe,Os3), 6.6 (3) wt%
pyrrhotite-4C (Fe,Sg) and 6.6 (3) wt% dolomite
[CaMg(COs),; limestone environmental dust].
The powder pattern and crystal structure of
(NH4)Fe,S; are now included in the PDF as
entry 00-055-0533.

3.7.2.4.5. Amoxicillin

The amoxicillin powder from a commercial
antibiotic capsule was highly crystalline.
Its powder pattern (files kadu918.gsas, KADU918.
raw, d8v3.prm and KADU921.rd) was matched
well by the PDF entries 00-039-1832 and
00-033-1528 for amoxicillin trihydrate, but there
was an additional peak at a d-spacing of
16.47 A (5.37° 20). With such a low-angle peak,
it seemed prudent to measure the pattern again



4. STRUCTURE DETERMINATION

Figure 4.3.19

(a) The correct crystal structure of remacemide nitrate. (b) The best structure determination using a least-squares analysis to compare observed and
calculated diffraction data with only the remacemide ion used in the structural model. Note that although the structural arrangement is completely
incorrect, it is clear that the solution has resulted in an optimal correlation of observed and calculated electron density. Note in particular that the
phenyl group maps closely onto the scattering density associated with the nitrate ion. (¢) The best structure determination using a maximum-likelihood
analysis to compare observed and calculated diffraction data with only the remacemide ion used in the structural model. The structure illustrated in (c)
is enantioimetrically related to correct solution shown in (a). The agreement between the remacemide molecular position, orientation and
conformation in (a) and (c) is as close as obtained in a standard least-squares analysis with the nitrate ion included.

implementation of simulated annealing in DASH, the HMC
approach is a factor of 2 more successful in locating the global
minimum over a series of 20 repeat runs. From a comparison of
Figs. 4.3.15 and 4.3.18, it is evident that the hybrid Monte Carlo
algorithm is also significantly more efficient, requiring on average
an order of magnitude fewer x* evaluations.

4.3.6. Using maximum-likelihood techniques to tackle incomplete
structural models

4.3.6.1. Introduction

Solving crystal structures from powder-diffraction data is a
significantly more difficult and less straightforward procedure
than its single-crystal counterpart because of the loss of infor-
mation associated with compressing the three-dimensional reci-
procal lattice on to the one dimension of a powder-diffraction
pattern with the corresponding inevitable overlap of Bragg
reflections. The situation can be ameliorated and Bragg-peak
intensities more easily extracted by explicitly using texture or
methods such as differential thermal expansion (Brunelli et al.,
2003). However, discussion of these experimental methods is
beyond the scope of this chapter. The incorporation of additional
chemical information directly into the structure-solution process
using both databases and complementary experimental techni-
ques is discussed in Chapter 4.4. This section discusses the reverse
situation, where there is a lack of chemical information, and
highlights the effectiveness of maximum-likelihood methods.

4.3.6.2. Working with incomplete structural models: maximum-
likelihood methods

In the previous section, the use of additional information to
facilitate real-space structure solution was discussed. Specifically,
constraining molecular conformation, through the active use of
torsion-angle distributions derived from the Cambridge Struc-
tural Database and the intramolecular distance restraints derived
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from solid-state NMR measurements, was shown to accelerate
structure solution and extend the range of complexity of struc-
tures that may be solved using real-space structure-determination
techniques (Middleton et al., 2002).

In this section, a complementary strategy is discussed where
not all the structure is initially determined. Consider the case of a
co-crystal or salt compound where there is more than one type of
molecule in the crystal structure. It is possible, through the use of
maximume-likelihood techniques, to account for and effectively
ignore a significant structural component and yet determine
precisely the location of all of the rest of the crystal structure.
Take the specific case of the anti-convulsant agent remacemide
nitrate (C;7;H,;N,O"-NO;™). Markvardsen et al. (2002) showed
that, although the nitrate group accounts for ~18% of the X-ray
scattering, a real-space structure solution, based not on a
conventional least-squares but on a maximum-likelihood opti-
mization between observed and calculated diffraction data,
yielded the correct location, orientation and torsion angles of the
remacemide ion without any attempt to locate the nitrate ion; see
Fig. 4.3.19.

The maximum-likelihood method is perhaps best explained by
specific reference to this crystal structure. The remacemide and
nitrate ions will be denoted as the fragment and blur, respec-
tively, for the purposes of the discussion. Given that the objective
of the maximum-likelihood approach is to determine only the
remacemide fragment, the a priori presumption is that the scat-
tering contribution of the blur is randomly distributed
throughout the unit cell. In reciprocal-space terms, this means
that the calculated structure factors are no longer a set of
numbers but are instead represented by a multidimensional
Gaussian distribution with a width that is determined by the
magnitude of the random scattering associated with the blur. As
a consequence, the scattering density of the nitrate ion is
actively considered in structure-factor representation, even
though its position is explicitly unknown. With a large unknown
component, the Gaussian broadening will be large and the



4.8. THE MAXIMUM-ENTROPY METHOD

T T

Intensity (counts)

284 2.0
26 (°)

(@)

1 4
28.0 28.2 28.6 28.8

1400
1200
1000
800
600
400

Intensity (counts)

200
0

YK)bs — Yaalc

284 28.6 28.8 29.0

26 ()
(b)

27.8 28.0 28.2 29.2

Figure 4.8.5

Observed intensity (points) as a function of the scattering angle, together
with lines representing (a) the calculated intensity of the Rietveld
refinement and (b) the intensities after decomposition according to
equation (4.8.22) (from Takata, 2008).

uncertainties can be avoided by the use of so-called G constraints
based on the integrated intensities of groups of overlapping
reflections (Sakata et al., 1990). G constraints can be easily
incorporated into the Sakata-Sato algorithm, and are thus
actively used in this algorithm.

G constraints are based on Ng groups of overlapping reflec-
tions. Group i has contributions of N reflections, resulting in a
‘group amplitude’ G’ equal to the square root of the integrated
intensity and related to the structure-factor amplitudes through

1/2

F)r) |

N

o= 3

=T

m;

ij

(4.8.23)

where m; is the point-group multiplicity of reflection j. The
summation runs over the symmetry-independent structure
factors contributing to group i. The standard uncertainty of the

group amplitude G; follows as
2
F(1) (1) )

( ,

The group amplitudes can be used in the G constraint in a
similar way to the F constraint [equation (4.8.10)]:

1/2
Ng

2

=)

; 1
O'(Gl) = E

m;

Zm;‘

(4.8.24)
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where G, and o(G',,) are the group amplitude and standard
uncertainty as obtained from the experiment, respectively, and
Giyewm is computed from Fyem(H;) (Section 4.8.4) according to
equation (4.8.23).
G constraints can be introduced into the MEM with aid of an
additional Lagrange multiplier s (see Section 4.8.4):
L=8—-xyCy—ApCpr—AsCq. (4.8.26)
Experience has shown that a certain fraction of reflections must
be available as F constraints in order for the MEM to converge to
the correct electron-density distribution. Since the ratio of A and
Mg 1s not known a priori, applications have used a single
constraint with a single Lagrange multiplier A s according to

L=8—-xyCy—ApsCrg (4.8.27)
with the combined F and G constraint
2
1 & F . (H,) — Fyen(H,
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where N,, = N + N (Palatinus, 2003).
The formal solution of the MaxEnt equations then becomes

[¢f: equation (4.8.17)]
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op; p;
The implementation of G constraints in the Sakata—Sato
algorithm is straightforward except for the computation of the
derivative of the combined constraint, which is slightly more

complicated than the calculation of the derivative of the F
constraint.

NN,

_ “Vel"Vpix prior
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Npix
X { o exp (4.8.29)
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4.8.6.2. Constraints using ‘partly phased’ reflections for
anomalous-scattering X-ray powder diffraction

X-ray anomalous scattering from powders can be used for ab
initio structure determination if at least two different data sets
are available: one measured with a wavelength near the
absorption edge of a chemical element contained in the sample
and another measured with a wavelength far from the absorption
edge. The corresponding Patterson map allows the localization of
the resonant-scattering atoms. The phases of the resolved struc-
ture factors of centrosymmetric structures can be derived from
this experiment. For noncentrosymmetric structures, two values
remain for the phase ¢; of each reflection i. They can be written as
©; = @o; £ A;, where ¢,; and A; are obtained from the experiment.
This limited information from anomalous-scattering X-ray
powder diffraction can be used in the MEM through the so-called
A constraints for partly phased reflections (Burger & Prandl,
1999). Defining A” = |F|cos(A;) and B" = |F||sin(A,)|, the A
constraint is



5.4. THIN FILMS AND MULTILAYERS

loer =14 + 15 (5.4.71)
Such superlattices are fabricated for applications as so-called
Bragg mirrors in light-emitting devices or as X-ray mirrors. The
X-ray reflectivity curves of such multilayers have various char-
acteristic features that are illustrated for the example of an X-ray
mirror system in Fig. 5.4.22. The figure also displays the reflec-
tograms of a 10 x (6 nm TiO,/6 nm C) superlattice on an Si
substrate that was again calculated using RCRefSim (Zaumseil,
2005). As for the single-layer system, a modified Bragg equation
(5.4.53) may be derived describing the occurrence of the super-
lattice peaks by inserting f,., instead of ¢,

2
A
(95)2 + m2 (—> )
ther

where (6.) is the average critical angle of the total superlattice.
The thickness values for each individual layer A and B and the
interface roughness o,45 and og,4 can be determined by fitting
with the matrix formalism. The figure displays three different
simulations with varying interface roughnesses. The difference
between the large fringes is accounted for by (5.4.72), while the
small fringing scales with the total thickness of the layer system,
i.e. 1/(Nt,,). Ideally, there are N — 2 small fringes between two
adjacent superlattice peaks. It can be realized from the figure that
for certain combinations of 045 and o, every second maximum
may vanish. This effect may be observed in superlattices having ¢4
= tg and is due to the destructive interference from X-ray beams
reflected at the AB and BA interfaces.

Superlattices with large differences in electron density
between individual layers can be used as X-ray mirrors. Typical
material combinations are Mo/Si, V/C or La/B,C and other
systems with substantial p, contrast. XRR also provides a sensi-
tive tool for studying the surface oxidation of metals and other

G =

(5.4.72)
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Figure 5.4.21

Simulated X-ray reflectivity patterns of barrier coating SnO/NiCrO,/Ag/
ZnO/SnO on glass recorded with Cu Ko radiation. The numbers above
each pattern indicate the thicknesses of the Ag and ZnO layers,
respectively, in nanometres. Other thicknesses were kept constant.
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Figure 5.4.22

Simulation of X-ray reflectivity of a (TiO,/C) superlattice on an Si wafer.
The numbers above the pattern give the roughnesses of the TiO, and C
layers, respectively, in nanometres. The substrate roughness was set to a
constant 0.4 nm. Superlattice peaks are indicated by arrows.

materials that are sensitive to surface oxidation. In fact, in his
seminal study Parrat investigated a thin copper film on glass,
where reliable agreement between the measured and simulated
reflectivity could only be achieved by introducing a 15 nm-thin
surface-oxide layer into the model (Parratt, 1954). The possibility
that there may be an oxide layer on the top of a thin-film or
multilayer system should routinely be considered when fitting
measured reflectivity curves. Surface chemical reactions may also
be studied by XRR.

5.4.7. Grazing-incidence X-ray scattering (GIXS)

In a GIXS experiment, a primary beam with momentum K,
impinges on the sample at a very small incidence angle, as in
XRR. Again, the elastically scattered intensity with momentum
vector K, [K| = [Ky| = 27/A, is measured in a reflective config-
uration, but it is not the specular reflection alone that is measured
by a point detector. Instead, the intensity in GIXS is collected
by a two-dimensional detector screen, allowing scattering events
for which the scattering vector Q = K — K, deviates from the
substrate normal to also be recorded. The incidence angle
between the primary (scattered) beam and the substrate surface
is generally denoted by «; (o), while the azimuth of the scattered
beam is indicated by 26, The two-dimensional intensity map is
then given as a function of momentum-transfer coordinates Q,
and Q, according to

2w . .
Qy = -~ sin 6 cos o sin 29f,
(5.4.73)

2
0, = T sin O(sin o; + sin ar;),

where the projection of K, to the sample surface is assumed to
define the x axis. The method is often used with small scattering
angles, and in this case is denoted as GISAXS. The analysis of
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Figure 5.5.5

Stress map of 1750 grains around a notch in an Mg AZ321 sample during
tensile deformation. Shown is the axial stress in each grain at an external
load of 110 MPa colour coded according to the colour bar at the bottom.
The figure represents a 2D projection of the 3D map. The diameters of
the spheres represent the grain sizes. Reprinted from Oddershede et al.
(2012), with permission from Elsevier.

~ 10~* and grain orientations to 0.5° precision (Margulies et al.,
2002; Martins et al., 2004; Oddershede et al., 2012; Bernier et al.,
2011). These properties imply that the method is well adapted to
studies of grain rotations (e.g. Poulsen et al., 2003). Furthermore,
having determined the entire strain tensor for each grain, the
corresponding stress tensor can be derived, using Hooke’s law;
see Section 5.5.10. Fig. 5.5.5 is an example of the application of
such stress mapping. In practice this formalism is applicable up to
5-10% plastic deformation; at higher external loads the centre-
of-mass algorithms tend to break down because of spot overlap.

5.5.8. 3D grain and orientation mapping

3DXRD microscopy and diffraction contrast tomography (DCT)
enable relatively fast generation of large 3D grain maps and 3D
orientation maps by use of tomographic reconstruction algo-
rithms. The development of such algorithms is non-trivial, as the
complexity in terms of the dimensionality and sheer size of the
reconstruction space is much larger than for classical tomo-
graphy. Another difference is that in 3DXRD and DCT the
number of useful projections is given by the number of obser-
vable reflections and as such is intrinsically limited (Poulsen,
2004).

In the most general case, some or all of the grains may be
smaller than the voxel size and as such the relevant representa-
tion is in terms of associating an orientation distribution function,
ODF, with each voxel. This implies operating in a numerically
very large six-dimensional solution space. Reconstruction algo-
rithms for this case are not routinely available. In practice, focus
has been on vector-field reconstructions, where each voxel is
associated with one and only one orientation. However, even
with this constraint, further simplifications may be required for
computational reasons.

An important simplification is the case where the grains are
both large in comparison to the voxel size and ‘undeformed’; that
is, the orientation spread within each grain is negligible. In this
case the spatial and angular degrees of freedom are separate, and
one may effectively reconstruct grain maps rather than orienta-
tion maps. Mathematically speaking, the task at hand in this case
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is to determine the 3D boundary network with as high a precision
as possible.

Furthermore, if the diffraction spots do not overlap, one
may initially index the various grains, and then reconstruct the
3D morphology of individual grains independently. Powerful
methods from the field of discrete tomography can then be
applied, allowing for reconstructions even in the case of very few
projections (Alpers et al., 2006; Batenburg et al., 2010). The first
3D grain maps were of this kind (Fu et al., 2003).

Another simplification for reconstructing both grains and
orientations is the use of a line beam, cf. Fig. 5.5.1. In this case, 3D
maps are generated by stacking independent reconstructions
from a set of layers.

At the time of writing, orientation maps comprising up to
20 000 grains have been obtained. The spatial resolution is of the
order 1-5 pm. Using synchrotron sources, the data-acquisition
time for a full 3D map is typically of the order of a few hours.

Below we outline two popular approaches for reconstruction.

5.5.8.1. Approach 1: Grain-by-grain volumetric mapping

In this approach it is assumed that the grains have negligible
orientation gradients. First, the orientations and centres-of-mass
of the grains are found, cf. Section 5.5.7. Then the 3D shape of
each grain is reconstructed. Owing to experimental uncertainties
the shapes of the grains will not form a perfect 3D space-filling
map, so the last step in the procedure is typically an optimization
of the grain-boundary position based on standard image-analysis
techniques such as smoothing or erosion/dilation. In practice, the
presence of voids can be a concern when the aim is to reach a
detailed description of boundary curvatures and triple-junction
geometry.

Diffraction contrast tomography (e.g. Johnson et al., 2008,;
Ludwig et al., 2008; King et al., 2008) is performed in this way, as
are standard 3DXRD microscopy experiments. As an example of
such work, Fig. 5.5.6 shows a grain map of a B-Ti sample recon-
structed by the DCT algorithm.

5.5.8.2. Approach 2: Orientation mapping by Monte Carlo
optimization

Classical transform algorithms are not well suited to handling
vector-field reconstructions. Focus has therefore been on Monte
Carlo based optimization routines. An example is the forward-

Figure 5.5.6
Rendition of the 3D grain structure in a cylindrical B-Ti specimen
containing 1008 grains, as obtained by the DCT algorithm. From Ludwig
et al. (2008).
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citly, PDFgetX2 (Qiu et al., 2004). This approach does not result
in a PDF on an absolute scale, which is generally not a problem
when modelling the data since an overall scale factor can be
applied to the calculated PDF. In practice, our experience is that
data sets collected at the same time (for example, a temperature
series) and processed using PDFgetX3 all appear with the same
scale factor and features such as peak heights can be compared
with each other even without modelling.

5.7.5. Extracting structural information
5.7.5.1. Obtaining the PDF from a model

Assume that we have a model for our sample that consists of a
set of N atoms at positions r; with respect to some origin. The
model is built up as described in Section 5.7.2.2.

If we consider a crystalline single-element material, for
example nickel, a typical neutron-sized sample contains in the
vicinity of 10%° or more atoms. To properly calculate R(r) we
would therefore need to carry out a double sum over this many
atoms, which is completely impractical. However, in practice
accurate PDFs can be calculated from many fewer (and a prac-
tically small number of) atoms. First, we are generally only
interested in calculating R(r) over a relatively narrow range of r,
say 20 A. In this case, we would still need to put the origin on
each of the 10* atoms in turn to accurately represent the sample,
but each time the sum need only be taken over atoms that lie
within 20 A of the origin atom, a volume that contains only 10*-
10? atoms. Second, the material in question may be crystalline. In
this case, the total sample is made up of many equivalent unit
cells which are periodically repeated in space (although it should
be noted that in real crystals, the ideal of every unit cell being

15

2.49 A 431 A

Figure 5.7.11

A schematic of the buildup of the PDF from the structural model for
face-centred-cubic nickel. The top figure shows the bond distances of
nearby atoms from a reference Ni atom at the corner. Its corresponding
PDF is shown below.
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identical may not hold well). In this favourable situation we need
only place the origin on each atom in the unit cell, since the
equivalent atom in all the other unit cells has exactly the same
atomic environment. This is now a computationally tractable
problem: a double sum where the first sum is taken over the
atoms in the unit cell (typically <100) and the second sum over all
atoms within r_,, of the origin atom, where r_,, is the maximum
extent over which the PDF is to be calculated. This is shown in
Fig. 5.7.11.

Even in the case where the sample is nanocrystalline or
amorphous, sufficient averaging over different possible config-
urations to replicate the measured PDF is in general possible with
a much smaller number of atoms. For example, in typical big-box
modelling approaches such as reverse Monte Carlo, boxes
containing ~10* atoms are typical.

max

5.7.5.2. PDFs from multi-element material

When calculating the PDF from samples with multiple atomic
species, we need an expression for the calculated radial distri-
bution function expressed in terms of partial radial distribution
functions between different atom types. In analogy to Section
5.7.2.6, when multiple elements are present in the sample we can
write
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(5.7.64)

5.7.5.3. Model-independent information from the PDF

It is clear from this description that the PDF is a heavily
averaged representation of the structure. First, directional
information is lost. Second, it is a linear superposition of the local
environments of many atoms. How can such a function contain
any useful information at all? The reason is that, especially on
very short length scales, the possible environments of particular
atoms are very limited. In nickel, for example, all the atoms
have the same number of neighbours (12) at the same nearest-
neighbour distance, ry, = 2.49 A (Wyckoff, 1967). There is no
intensity in R(r) for r < r,, and a sharp peak at r,,. This behaviour
is very general and true even in atomically disordered systems
such as glasses, liquids and gases. In such systems the second and
higher neighbour distances are generally less well defined and the
PDF peaks are broader. However, in crystals, because of the
long-range order of the structure, all neighbours at all lengths are
well defined and give rise to sharp PDF peaks (Levashov et al.,
2005). The position of these peaks directly gives the separations
of pairs of atoms in the structure. If data are measured with high
enough Q, .., finding the position of a peak maximum will give
the distance separating a pair of atoms in the material. If the
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7.3. MATERIALS FOR ENERGY STORAGE AND CONVERSION
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Figure 7.3.1

Multi-phase Rietveld refinement of a borehole specimen. The line shows the calculated pattern. Raw data points are shown as + symbols. Individual
peaks for the trace phases are highlighted by arrows. Off-scale peaks are from quartz. Reflection tick marks for each phase are shown below the
pattern. Quantitative weight % values for the phases are listed on the lower right of the plot. See Rodriguez et al. (2012). Copyright (2012) JCPDS -
International Centre for Diffraction Data. Reproduced with permission.

release initiated upon conversion of the low-temperature
y-Ca(BH,), phase to the high temperature B-Ca(BH,), phase.
Synchrotron sources also have the advantage of a tunable X-ray
wavelength and are therefore not restricted to a fixed wavelength
as dictated by the anode of a standard sealed-tube source. In this
regard, synchrotron sources are often employed for atomic pair
distribution function (PDF) analysis. This is because synchrotron
sources can easily generate the hard X-ray wavelengths (e.g.
<0.5 A) that are necessary to achieve high momentum-transfer
values (i.e. Qnax > 20 z&_l) in measured data sets (see Chupas et
al., 2003). PDF data are useful for characterizing nearest-
neighbour distances between atomic species in a structure and
can be beneficial for both crystalline and non-crystalline
compounds. Chupas et al. (2007) demonstrated the use of
synchrotron radiation to detect the presence of H, in
Mn;[Co(CN)g],-3H, by differential PDF analysis. This approach
revealed how the H, molecules are bound within the porous
framework, resulting in a more detailed understanding of how H,
is stored and recovered from the material. While access to
synchrotron facilities is often limited, well designed experiments
can lead to significant knowledge of a material’s behaviour.
Chapter 2.2 in this volume is dedicated to synchrotron radiation
and the reader is referred to that chapter for further details.

7.3.4. Wind

One of the critical aspects of green technologies such as wind and
solar is the intermittent nature of the harvested energy, which
dictates the necessity for energy storage. Wind farms have been
employing a clever strategy for power storage through the use of
compressed air energy storage (CAES), as outlined by Cavallo
(2007). This method employs the use of underground caverns
(man-made or naturally occurring). When the wind is active at a
time of low power demand, a wind farm may choose to transfer
power to an air compressor that pumps air into a cavern, thereby
storing the energy in the form of pressure. The energy can be
converted back to electricity by releasing the air pressure through
a turbine. Careful characterization of cavern geology is impor-
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tant, especially with regard to the materials present in the access
boreholes that are drilled deep into the ground to bridge the
cavern to the surface (Rodriguez er al, 2012). Quantitative
characterization of the phases present as a function of depth is
important information for assessing the impact of cyclic air
pressure on the CAES station. Fig. 7.3.1 shows a Rietveld
refinement for an eight-phase diffraction pattern obtained from a
core-drill specimen. The identification of the phases was facili-
tated by employing X-ray fluorescence (XRF) for determination
of the elemental composition (Rodriguez et al., 2012). It is worth
noting that the plot in Fig. 7.3.1 shows intensity for phases that
are very close to the background level. The quartz peaks, which
make up more than 90 wt% of the sample, go off-scale on the
intensity axis. This allows the signals from the other minor or
trace phases present to be seen more easily. One phase of critical
importance for CAES functionality was FeS, (pyrite), because
oxidation of this phase could alter the pH and mineralogy of the
borehole. The phase analysis via Rietveld refinement revealed a
very small weight fraction of pyrite at this borehole depth. In fact,
the quantity was so small and confounded by peak overlap with
other phases that its detection proved difficult without the
supporting XRF analysis. Typical errors associated with phase
quantification are in the 0.1 to 0.5 weight percent range,
depending on the quality of the XRD data and the scattering
behaviour of the quantified phase. This is one of the limitations of
powder XRD. Detection and quantification of major, minor and
trace phases via XRD analysis can give better insight into the
functionality and possible issues that might impact CAES, a
practical option for energy storage at large wind-farm facilities.

7.3.5. Solar

The challenge of solar technology is to efficiently convert
photonic energy from sunlight into another form of energy,
typically electricity. The solar cell is the quintessential building
block of the industry, but materials science challenges still
remain. The three best-known issues with photovoltaics are:
(1) the influence of grain boundaries, (2) the electron affinity of
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Figure 7.10.8

Structure determination of the nanocrystalline a-phase of Pigment Red 170 from powder data using an isostructural methyl derivative with improved
crystallinity. Top, Rietveld plot of the a-phase of Pigment Red 170 (R = H); bottom, methyl derivative (R = CH;). Experimental diffractograms are in
black, the calculated diffractogram is in red, the background is in green and difference curves are in blue. Wavelengths were 1.5406 A (Cu Ka;) for
Pigment Red 170 and 1.149914 A (synchrotron radiation) for the methyl derivative. The space group is P2,2,2;, with Z = 4, a = 23.960 (9), b =
23.234 (9), ¢ = 3.887 (1) A for Pigment Red 170 and a = 24.6208 (9), b = 22.8877 (9), ¢ = 3.9388 (2) A for the methyl derivative.

7.10.2.6. Investigation of local structures of nanocrystalline and (v) The detection of crystal seeds in an amorphous powder. The
amorphous organic compounds using pair-distribution function commencement of crystallization is visible in the PDF at an
analyses earlier stage than in the powder diagram itself.

7.10.2.6.1. General PDF analyses are widely used for inorganic compounds, for

example glasses, liquids, amorphous or highly disordered mate-
rials, quasicrystals efc. (Neder & Proffen, 2009; Egami & Billinge,
2012). The application of PDF methods to organic compounds is
at present (2018) in its infancy. The generation of a PDF curve
from powder diffraction data is possible with programs such as
PDFgetX3 (Juhas et al., 2013). The simulation of PDF curves
from a structural model can be achieved, for example with
DISCUS (Neder & Proffen, 2009), RMCprofile (Tucker et al.,
2007), PDFgui (Farrow et al., 2007), DiffPy-CMI (Juhas et al.,
2015) or TOPAS (Coelho, 2018) (see Fig. 7.10.9). The full fitting
of a structural model of an organic crystal structure to a PDF
curve using restraints for bond lengths, bond angles and planar
groups, such as in a Rietveld refinement, is nowadays becoming
possible (Prill et al., 2016).

There is no sharp boundary between crystalline, nanocrystal-
line and amorphous states. In an amorphous sample the mole-
cules can be ordered, despite the absence of Bragg reflections.
For example, an organic compound with a domain size of 10 nm
corresponding to about 5 x 5 x 5 unit cells with 500 molecules
will not cause a single visible peak in the X-ray powder pattern;
nevertheless, the molecules have a given conformation and form
an ordered arrangement with a defined local structure.

Local structures in crystalline, nanocrystalline and amorphous
organic compounds, including pharmaceuticals, agrochemicals,
pigments and optoelectronic materials, can be investigated by
pair-distribution function (PDF) analysis.

The pair-distribution function (also called the ‘radial distri-
bution function’) represents the probability G(r) of finding
two atoms with an interatomic distance r. The PDF is
weighted with the scattering power of the two atoms and is

summed over all atom—atom pairs. The PDF contains intramo- 7.10.2.6.2. Example: nanocrystalline phase of Pigment Yellow
lecular as well as intermolecular atom-atom distances. PDF 213
curves are derived by Fourier transformations from carefully Pigment Yellow 213 is an industrial hydrazone pigment used
measured powder diffractograms. The method itself is explained for automotive coatings. The compound exhibits two polymorphs
in Chapter 5.7. (Fig. 7.10.10). The brown B-phase is obtained directly from the
Applications to organic compounds include the following. synthesis. Solvent treatment for 3 h at 423 K leads to the desired
(i) The investigation of local structures and packing motifs in greenish-yellow o-phase. The crystal structure of the a-phase
nanocrystalline and amorphous compounds. could be solved by a combination of X-ray powder diffraction,
(ii) The identification of polymorphic forms in nanocrystalline electron diffraction and lattice-energy minimizations (Schmidt,
and amorphous compounds. Briihne et al., 2009). The molecules are almost planar and form a
(iii) The investigation of the actual atomic and molecular layer structure with an interlayer distance of 3.3 A (Fig. 7.10.11).
arrangements in disordered structures. The metastable f-phase is a nanocrystalline powder. The
(iv) To determine whether a powder is a co-crystal or a physical structures of both phases were investigated by PDF analyses.
mixture of the individual compounds. Powder patterns were carefully recorded with a short wavelength
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7.13. SUPERCONDUCTORS
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Selected magnetic symmetry and antisymmetry elements that Dannay er al. (1958) first applied to magnetic symmetry. (a) Inversion 1; (b) anti-
inversion 1 ; (¢) translation f; (d) anti-translation ¢’; (e) rotation 2; (f) anti-rotation 2’; (g) reflection m; and (k) anti-reflection m'.

ferromagnetic moments have a ferromagnetic component and an
antiferromagnetic component.

Collinear antiferromagnetic ordering. An example of collinear
antiferromagnetic ordering is shown in Fig. 7.13.16(d). In this
case there is only one type of ion (or atom), located in equivalent
crystallographic positions and having equal moment amplitudes
in an antiparallel orientation.

Canted antiferromagnetic ordering. Fig. 7.13.16(e) shows an
example of a canted non-collinear antiferromagnetic order in
which the moments tilt in such a way that both the M, and M,
directions have antiparallel components. The magnetic unit cell
has parameters that are double those of the nuclear unit cell.

A7.13.1.2. The 36 magnetic lattices and 1651 Shubnikov groups

The types of magnetic lattices are shown in Fig. 7.13.17. They
are similar to the familiar crystal lattices in that they represent
identical chemical entities, but the associated magnetic moments
have the same amplitude and opposite orientation. The first
row of the figure shows five types of white lattices: P (primitive),
C (C-face centred), A (A-face centred), F (all-face centred) and /
(body centred). All the white lattices represent ferromagnetic
ordering of the moments. A white-and-black (W&B) lattice can
be thought of as containing two lattices of the same type, one of
which is termed ‘white’ and the other ‘black’. The origin of the
black lattice can be located at the centre of a face or at an edge, or
at the body centre of the white lattice. For example, Fig.
7.13.17(e) indicates a white [ lattice combined with a black [
lattice with origin at c¢/2 of the white lattice, resulting in the W&B
lattice I, of Fig. 7.13.17(c). The W&B lattices are expressed by
two-letter symbols in which the symbol (P, C, A, I or F) of the W
lattice is followed by a subscript (A, a, C, ¢, I or s) which indicates
the location of the origin of the black lattice. The capital subscript
letters A, C and [ indicate that the origin of the B lattice is at the
A-face centre (0, b/2, c/2), C-face centre (a/2, b/2, 0) and at the
body centre (a/2, b/2, c/2) of the white lattice, respectively. The
lower-case subscript letters a and c indicate that the origin of
the black lattice is at the centre of the a axis (a/2) and ¢ axis (c/2)
of the white lattice, respectively. For example, the lattice P is a
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combination of a P W lattice with a P B lattice with the origin at
the C-face centre (3,1, 0) of the W lattice, while P, indicates that
the origin of the P B lattice is at ¢/2. These types of magnetic
lattices, when applied to the seven crystal systems, give a total of
36 magnetic lattices, of which 14 are pure white and 22 are W&B
lattices (see Table 7.13.3).

A7.13.1.3. Magnetic symmetry and antisymmetry operations

Magnetic symmetry elements include all the symmetry
elements of the nuclear structure plus the corresponding anti-
symmetry elements that are produced by adding the time (or
current) reversal operation R. Selected typical elements of
symmetry and antisymmetry and their symmetry-operation
matrices are shown in Fig. 7.13.18. The operation of an element of
antisymmetry can be performed as a normal symmetry operation
followed by a reversal in direction.

A7.13.1.4. Magnetic reflection conditions for centred lattices

Table 7.13.4 lists the possible neutron magnetic reflection
conditions related to the magnetic lattices illustrated in Fig.
7.13.17. The results are obtained by evaluating the neutron
magnetic structure factor for Fj;; = 0 and are confirmed by
computations using the program GSAS (Larson & Von Dreele,
2004). The conditions for systematic extinctions of magnetic
reflections for glide planes and screw axes were reported by
Ozerov (1967).

Effects of spin orientation in magnetic structures. Fig. 7.13.3 is a
schematic view of the definition of the vectors relevant to the
evaluation of the magnetic structure factor. In addition to the
magnetic reflection conditions for centred lattices, glides and
screws, systematic absences can also be observed when the
condition F;; = 0 occurs because the magnetic spin K is parallel
to the scattering vector & for a class of reflections Akl. In this case,
the angle « between the scattering and the magnetization vectors
is zero and, consequently, |g| = sino = 0.

Ambiguous spin orientation. Shirane (1959) showed that
ambiguous spin structures can be deduced from NPD data, and
concluded that: (i) no information can be obtained about the spin





