modify your search
 Results for DC.creator="A." AND DC.creator="S." AND DC.creator="Borovik-Romanov"   page 1 of 2 pages.
Magnetic properties
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, ch. 1.5, pp. 106-153 [ doi:10.1107/97809553602060000904 ]
Chapter 1.5. Magnetic properties This chapter gives a short review of the structure and some properties of magnetic ... to describe the invariance of the thermodynamic equilibrium states of a body. The first part of the chapter is devoted to a brief classification of disordered and ordered magnetics. The classification ...

Connection between Gaussian and SI units
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.10, p. 148 [ doi:10.1107/97809553602060000904 ]
... how the corresponding values in SI units are obtained. As a summary, Table 1.5.10.1 gives for each such quantity the corresponding ...

The difference between the magnetic anisotropies at zero strain and zero stress
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.9.3, p. 148 [ doi:10.1107/97809553602060000904 ]
... at zero strain and zero stress The spontaneous magnetostriction makes a contribution to the magnetic anisotropy (especially in crystals with a cubic prototype). Therefore, to find the full expression for ... be written as As an example, for the ferromagnets with a cubic prototype this equation may be written asThe coefficients ...
     [more results from section 1.5.9 in volume D]

Multiferroics
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.8.3, pp. 143-145 [ doi:10.1107/97809553602060000904 ]
... Schmid, 1994b). The term primary ferroics was defined in a thermodynamic classification, distinguishing primary, secondary and tertiary ferroics (Newnham, 1974 ... M are perpendicular to each other. Shuvalov & Belov (1962) published a list of the 13 magnetic groups that admit the coexistence ... all ferroelectric ferromagnets and all ferroelectric antiferromagnets of type III a except 6' and 6'mm'. The first experimental ...
     [more results from section 1.5.8 in volume D]

Linear magnetic birefringence
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.7.3, pp. 138-139 [ doi:10.1107/97809553602060000904 ]
... the component of the relative permittivity can be represented as a series in the powers of the components of the magnetization ... components gives rise to birefringence in cubic crystals and to a change of the birefringence in uniaxial and lower-symmetry crystals. ... perpendicular to the principal z axis. In the simplest case, a difference in the refractive indices and arises: where is ...
     [more results from section 1.5.7 in volume D]

Reorientation transitions
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.6, pp. 132-133 [ doi:10.1107/97809553602060000904 ]
... change sign at some temperature below the critical temperature. As a result, the direction of the vector (or ) changes relative to ... changes. Such phase transitions are called reorientation transitions. Cobalt is a typical ferromagnet and experiences two such reorientation transitions. It is a hexagonal crystal, which at low temperatures behaves as an ...

Other weakly non-collinear magnetic structures
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.5.2, p. 132 [ doi:10.1107/97809553602060000904 ]
... collinear magnetic structures 1.5.5.2. Other weakly non-collinear magnetic structures A thermodynamic potential of the form (1.5.5.1) may give rise not ... to the reverse phenomenon. If the coefficient B (instead of A) changes its sign and , the material will undergo a transition into a slightly canted ferromagnetic structure, in which ...
     [more results from section 1.5.5 in volume D]

Ferroic domains
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.4.3, p. 128 [ doi:10.1107/97809553602060000904 ]
Ferroic domains 1.5.4.3. Ferroic domains Aizu (1970) gave a classification of domain formation when a crystal undergoes a transition from an unordered to a magnetically ordered state ...
     [more results from section 1.5.4 in volume D]

Uniaxial antiferromagnet
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.3.3.2, pp. 125-126 [ doi:10.1107/97809553602060000904 ]
... the axis. This means that the term with the coefficient a is responsible for the anisotropy of the uniaxial antiferromagnet. We ... an antiferromagnet is linear with the magnetic field, as for a paramagnet, if the magnetic field is not too strong. The ... field Figure 1.5.3.6 | | Temperature dependence of the mass susceptibility for a uniaxial antiferromagnet along () and perpendicular () to the axis of ...
     [more results from section 1.5.3 in volume D]

Exchange symmetry
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.2.4, p. 117 [ doi:10.1107/97809553602060000904 ]
... Guccione (1965), and Sirotin & Shaskol'skaya (1979). References Andreev, A. F. & Marchenko, V. I. (1976). Macroscopic theory of spin ... 1538. (English translation: Sov. Phys. JETP, 43, 794-803.) Andreev, A. F. & Marchenko, V. I. (1980). Symmetry and the macroscopic ... R. (1964). Symmetry and Magnetism. Amsterdam: North-Holland. Cracknell, A. P. (1975). Magnetism in Crystalline Materials. Oxford: Pergamon. ...
     [more results from section 1.5.2 in volume D]

Page: 1 2 Next powered by swish-e
























































to end of page
to top of page