modify your search
 Results for DC.creator="G." AND DC.creator="Eckold"
Phonons
Eckold, G.  International Tables for Crystallography (2013). Vol. D, ch. 2.1, pp. 286-313 [ doi:10.1107/97809553602060000911 ]
... of the wavevector q by an arbitrary reciprocal lattice vector g. Hence, the elements of the dynamical matrix represent periodic functions ... our considerations to the symmetry operations of the space group G(q) of the wavevector q that leave the wavevector invariant modulo some reciprocal-lattice vector g(q, S),then equation (2.1.3.13) provides an ordinary (3N- ...

Conclusion
Eckold, G.  International Tables for Crystallography (2013). Vol. D, Section 2.1.4, p. 311 [ doi:10.1107/97809553602060000911 ]
... lattice-dynamical program package for phenomenological model calculations written by Eckold et al. (1987; see also Eckold, 1992), it provides the symmetry reduction of the dynamical matrix ... Sciences, Vol. 10. Berlin: Springer. (ISBN 3-540-09399-0.) Eckold, G. (1992). UNISOFT - a program package for lattice- ...

Example
Eckold, G.  International Tables for Crystallography (2013). Vol. D, Section 2.1.3.7.1, p. 311 [ doi:10.1107/97809553602060000911 ]
Example 2.1.3.7.1. Example As an example, let us once more consider the space group . For , the character table shown in Table 2.1.3.8 summarizes all essential information about irreducible, vector and tensor representations. Obviously, the vector representation consists of the irreducible representations and , the latter being two-dimensional. [Gamma]-point phonons ...
     [more results from section 2.1.3 in volume D]

Thermal expansion, compressibility and Grüneisen parameters
Eckold, G.  International Tables for Crystallography (2013). Vol. D, Section 2.1.2.8, pp. 292-294 [ doi:10.1107/97809553602060000911 ]
Thermal expansion, compressibility and Grüneisen parameters 2.1.2.8. Thermal expansion, compressibility and Grüneisen parameters So far, we have always assumed that the crystal volume is constant. As long as we are dealing with harmonic solids, the thermal excitation of phonons does not result in a mean displacement of any atom. ...
     [more results from section 2.1.2 in volume D]

Introduction
Eckold, G.  International Tables for Crystallography (2013). Vol. D, Section 2.1.1, p. 286 [ doi:10.1107/97809553602060000911 ]
... dynamics. Cambridge University Press. (ISBN 0-521-39293-4.) Leibfried, G. (1955). Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle. ... 324. Berlin: Springer. Maradudin, A. A., Montroll, E. W., Weiss, G. H. & Ipatova, I. P. (1971). Theory of lattice dynamics ... of phonons. London: Wiley. (ISBN 0-471-71585-9.) Srivastava, G. P. (1990). The physics of phonons. Bristol: Adam ...

Glossary
Eckold, G.  International Tables for Crystallography (2013). Vol. D, Section 2.1.5, pp. 311-312 [ doi:10.1107/97809553602060000911 ]
... table degeneracy of the eigenfrequency Fourier-transformed force-constant matrix g reciprocal-lattice vector space group of the wavevector q point ... augmented point group of the wavevector q order of group G density of phonon states density of phonon states according to ... the Hermitian conjugate matrix T denotes the transposed matrix References Eckold, G. & Hahn, Th. (1987). Gitterdynamik von KLiSO4. In ...

powered by swish-e
























































to end of page
to top of page