modify your search
 Results for DC.creator="M." AND DC.creator="I." AND DC.creator="Aroyo"   page 1 of 3 pages.
The Bilbao Crystallographic Server
Aroyo, M. I., Perez-Mato, J. M., Capillas, C. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, ch. 1.7, pp. 57-69 [ doi:10.1107/97809553602060000796 ]
... new programs and applications are being added (Kroumova, Perez-Mato, Aroyo et al., 1998; Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006). The aim of the ...

Relations of Wyckoff positions for a group-subgroup pair of space groups
Aroyo, M. I., Perez-Mato, J. M., Capillas, C. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 1.7.4, pp. 66-68 [ doi:10.1107/97809553602060000796 ]
... of Part 3 . The program WYCKSPLIT (Kroumova, Perez-Mato & Aroyo, 1998) calculates the Wyckoff-position splittings for any group-subgroup ... the group-subgroup chain of space groups of an index [i]. The general-position orbits have unique splitting schemes: they are split into [i] suborbits of the general position of the subgroup, i.e. ...
     [more results from section 1.7.4 in volume A1]

The program COMMONSUPER
Aroyo, M. I., Perez-Mato, J. M., Capillas, C. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 1.7.3.2.3, p. 66 [ doi:10.1107/97809553602060000796 ]
... maximum lattice index . The output data of COMMONSUPER are: (i) The space-group types of the common supergroups of and ... structures. For the program finds two common supergroups of , and , : (i) the group with and , and (ii) , with and . The ... the common supergroup found by COMMONSUPER. References Brouskov, V., Hanfland, M., Pöttgen, R. & Schwarz, U. (2005). Structural phase ...
     [more results from section 1.7.3 in volume A1]

Maximal isomorphic subgroups
Aroyo, M. I., Perez-Mato, J. M., Capillas, C. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 1.7.2.2.2, p. 58 [ doi:10.1107/97809553602060000796 ]
Maximal isomorphic subgroups 1.7.2.2.2. Maximal isomorphic subgroups Maximal subgroups of index higher than 4 have indices p, p2 or p3, where p is a prime. They are isomorphic subgroups and are infinite in number. In IT A1, the isomorphic subgroups are listed as members of series under the heading `Series of ...
     [more results from section 1.7.2 in volume A1]

Introduction
Aroyo, M. I., Perez-Mato, J. M., Capillas, C. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 1.7.1, p. 57 [ doi:10.1107/97809553602060000796 ]
... new programs and applications are being added (Kroumova, Perez-Mato, Aroyo et al., 1998; Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006). The aim of the ...

Guide to the use of the space-group tables
Hahn, Th., Looijenga-Vos, A., Aroyo, M. I., Flack, H. D., Momma, K. and Konstantinov, P.  International Tables for Crystallography (2016). Vol. A, ch. 2.1, pp. 142-174 [ doi:10.1107/97809553602060000926 ]
... with exercises) is provided by Hahn & Wondratschek (1994); see also Müller (2013). Section 2.1.1 displays, with the help of ... groups and space groups are classified according to three criteria: (i) According to geometric crystal classes, i.e. according to the crystallographic ... be determined One dimension - - - 2 None a Two dimensions Oblique m Oblique 2 None a, b mp (monoclinic) [gamma]§ Rectangular ...

Enlarged unit cell, index 2
Wondratschek, H. and Aroyo, M. I.  International Tables for Crystallography (2011). Vol. A1, Section 2.1.4.3.1, pp. 80-81 [ doi:10.1107/97809553602060000797 ]
... different cell enlargements is as follows: (1) Triclinic space groups: (i) , (ii) , (iii) , (iv) A-centring, (v) B-centring, (vi) C ... Monoclinic space groups: (a) with P lattice, unique axis b: (i) , (ii) , (iii) , (iv) B-centring, (v) C-centring, (vi) A ... vii) F-centring. (b) with P lattice, unique axis c: (i) , (ii) , (iii) , (iv) C-centring, (v) A-centring, (vi) ...
     [more results from section 2.1.4 in volume A1]

Basis transformation and origin shift
Wondratschek, H. and Aroyo, M. I.  International Tables for Crystallography (2011). Vol. A1, Section 2.1.3.3, pp. 77-79 [ doi:10.1107/97809553602060000797 ]
... change of basis, i.e. if P is the unit matrix I. The column `shift' is empty if there is no origin ...
     [more results from section 2.1.3 in volume A1]

Space groups with a rhombohedral lattice
Wondratschek, H. and Aroyo, M. I.  International Tables for Crystallography (2011). Vol. A1, Section 2.1.2.5.3, pp. 75-76 [ doi:10.1107/97809553602060000797 ]
Space groups with a rhombohedral lattice 2.1.2.5.3. Space groups with a rhombohedral lattice The seven trigonal space groups with a rhombohedral lattice are often called rhombohedral space groups. Their HM symbols begin with the lattice letter R and they are listed with both hexagonal axes and rhombohedral axes. Rules (a) A ...
     [more results from section 2.1.2 in volume A1]

Contents and arrangement of the subgroup tables
Wondratschek, H. and Aroyo, M. I.  International Tables for Crystallography (2011). Vol. A1, Section 2.1.1, p. 72 [ doi:10.1107/97809553602060000797 ]
... IT A. The data comprise: Headline Generators selected General position I Maximal translationengleiche subgroups II Maximal klassengleiche subgroups I Minimal translationengleiche supergroups II Minimal non-isomorphic klassengleiche supergroups. For ...

Page: 1 2 3 Next powered by swish-e
























































to end of page
to top of page