modify your search
 Results for DC.creator="M." AND DC.creator="Kenzelmann"   page 1 of 2 pages.
Magnetic properties
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, ch. 1.5, pp. 106-153 [ doi:10.1107/97809553602060000904 ]
... years. For this reason, Section 1.5.8.3 has been updated by M. Kenzelmann. In Section 1.5.9, the magnetostriction in ferromagnets is discussed. Only ... This equation shows how the units of B, H and M are related in the Gaussian system. The unit for ...

Connection between Gaussian and SI units
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.10, p. 148 [ doi:10.1107/97809553602060000904 ]
Connection between Gaussian and SI units 1.5.10. Connection between Gaussian and SI units Numerical values of magnetic quantities are given in the tables and figures in this chapter in Gaussian units together with information on how the corresponding values in SI units are obtained. As a summary, Table 1.5.10.1 gives for ...

The difference between the magnetic anisotropies at zero strain and zero stress
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.9.3, p. 148 [ doi:10.1107/97809553602060000904 ]
The difference between the magnetic anisotropies at zero strain and zero stress 1.5.9.3. The difference between the magnetic anisotropies at zero strain and zero stress The spontaneous magnetostriction makes a contribution to the magnetic anisotropy (especially in crystals with a cubic prototype). Therefore, to find the full expression for the ...
     [more results from section 1.5.9 in volume D]

Multiferroics
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.8.3, pp. 143-145 [ doi:10.1107/97809553602060000904 ]
... simultaneous existence of spontaneous ferroelectric polarization P and magnetic polarization M, which they called ferromagnetoelectrics. Neronova and Belov considered only structures with parallel alignment of P and M (or L). There are three more groups that allow ... coexistence of ferroelectric and ferromagnetic order, in which P and M are perpendicular to each other. Shuvalov & Belov (1962) published ...
     [more results from section 1.5.8 in volume D]

Linear magnetic birefringence
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.7.3, pp. 138-139 [ doi:10.1107/97809553602060000904 ]
Linear magnetic birefringence 1.5.7.3. Linear magnetic birefringence The magnetic contribution to the component of the relative permittivity can be represented as a series in the powers of the components of the magnetization and the antiferromagnetic vector. The magnetic birefringence (also called the Cotton-Mouton or Voigt effect) is described by the ...
     [more results from section 1.5.7 in volume D]

Reorientation transitions
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.6, pp. 132-133 [ doi:10.1107/97809553602060000904 ]
Reorientation transitions 1.5.6. Reorientation transitions In many materials, the anisotropy constants change sign at some temperature below the critical temperature. As a result, the direction of the vector (or ) changes relative to the crystallographic axes. Correspondingly, the magnetic symmetry of the material also changes. Such phase transitions are called reorientation transitions. ...

Other weakly non-collinear magnetic structures
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.5.2, p. 132 [ doi:10.1107/97809553602060000904 ]
Other weakly non-collinear magnetic structures 1.5.5.2. Other weakly non-collinear magnetic structures A thermodynamic potential of the form (1.5.5.1) may give rise not only to the weak ferromagnetism considered above but also to the reverse phenomenon. If the coefficient B (instead of A) changes its sign and , the material will ...
     [more results from section 1.5.5 in volume D]

Ferroic domains
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.4.3, p. 128 [ doi:10.1107/97809553602060000904 ]
Ferroic domains 1.5.4.3. Ferroic domains Aizu (1970) gave a classification of domain formation when a crystal undergoes a transition from an unordered to a magnetically ordered state that has a lower point-group symmetry (see also Section 3.1.1 ). The unordered state (called the prototype phase) has a grey point group. ...
     [more results from section 1.5.4 in volume D]

Uniaxial antiferromagnet
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.3.3.2, pp. 125-126 [ doi:10.1107/97809553602060000904 ]
... to the axis. References Landau, L. D. (1933). Eine mögliche Erklärung der Feldabhängigkeit der Suszeptibilität bei ...
     [more results from section 1.5.3 in volume D]

Exchange symmetry
Borovik-Romanov, A. S., Grimmer, H. and Kenzelmann, M.  International Tables for Crystallography (2013). Vol. D, Section 1.5.2.4, p. 117 [ doi:10.1107/97809553602060000904 ]
... Tasci, E. S., de la Flor, G., Perez-Mato, J. M. & Aroyo, M. I. (2012). Magnetic symmetry in the Bilbao Crystallographic Server ... In Russian.) Moscow: Izd. MGU. Landau, L. D. & Lifshitz, E. M. (1957). Electrodynamics of Continuous Media. (In Russian.) Moscow: ...
     [more results from section 1.5.2 in volume D]

Page: 1 2 Next powered by swish-e
























































to end of page
to top of page