modify your search
 Results for DC.creator="Y." AND DC.creator="Billiet"
Series of maximal isomorphic subgroups
Billiet, Y.  International Tables for Crystallography (2011). Vol. A1, Section 2.1.5, pp. 82-84 [ doi:10.1107/97809553602060000797 ]
... rhombohedral axes, equation (2.1.5.1) would be written with the matrix Y to be determined. The transformation from hexagonal to rhombohedral axes ... one gets From equation (2.1.5.4) it follows that One obtains Y from equation (2.1.5.5) by matrix multiplication, and from Y for the bases of the subgroups with rhombohedral axesThe ...
     [more results from section 2.1.5 in volume A1]

Tables of maximal subgroups of the plane groups
Billiet, Y., Aroyo, M. I. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, ch. 2.2, pp. 97-114 [ doi:10.1107/97809553602060000798 ]
Tables of maximal subgroups of the plane groups Subgroup and supergroup data for the two-dimensional plane groups are presented. The data include: the generators selected, the general position, maximal translationengleiche subgroups, maximal klassengleiche subgroups, minimal translationengleiche supergroups and minimal non-isomorphic klassengleiche supergroups. International Tables for Crystallography Index of the ...

Tables of maximal subgroups of the space groups
Billiet, Y., Aroyo, M. I. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, ch. 2.3, pp. 115-432 [ doi:10.1107/97809553602060000799 ]
Tables of maximal subgroups of the space groups Subgroup and supergroup data for the three-dimensional space groups are presented. The data include: the generators selected, the general position, maximal translationengleiche subgroups, maximal klassengleiche subgroups, minimal translationengleiche supergroups and minimal non-isomorphic klassengleiche supergroups. International Tables for Crystallography Index of the ...

powered by swish-e
























































to end of page
to top of page