your search
 Results for by Glazer, A. M.   page 1 of 2 pages.
Determination of linear birefringence
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.6, p. [ doi:10.1107/97809553602060000905 ]
clearly depend on R, but also on wavelength. For complete destructive interference, because of the way the transmitted rays are resolved into the vibration direction of the analyser (see Fig. 1.6.4.2), R must either be zero (as in cubic ...

Orientation studies
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.14, p. [ doi:10.1107/97809553602060000905 ]
...

Interference figures
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.11, p. [ doi:10.1107/97809553602060000905 ]
in the image corresponds to a different transmission direction (see Fig. 1.6.4.8). Moreover, the visible effects are entirely caused by interference, and there is no image of the details of the specimen itself. That image is of course also present ...

Dispersion
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.16, p. [ doi:10.1107/97809553602060000905 ]
...

Fast and slow vibration directions
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.9, p. [ doi:10.1107/97809553602060000905 ]
of R change, so that there are altogether three colours providing information. The quartz wedge (Fig. 1.6.4.6) is an elongated wedge-shaped plate of progressively increasing thickness, usually cut parallel to the c axis so ...

Fringe counting
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.8, p. [ doi:10.1107/97809553602060000905 ]
the edge acts as a natural wedge of variable R and displays a series of fringes corresponding to the orders within the complete spectrum of interference colours, from first-order grey up to the main colour shown by the body of the crystal (Figs. 1.6.4.5 ...

Other methods of measuring birefringence
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.10, p. [ doi:10.1107/97809553602060000905 ]
References Glazer, A. M., Lewis, J. G. & Kaminsky, W. (1996). An automatic optical imaging system for birefringent media. Proc. R. Soc. London Ser. A, 452, 2751–2765. Google Scholar Wood, I. G. & Glazer, A. M. (1980 ...

Biaxial figures
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.13, p. [ doi:10.1107/97809553602060000905 ]
The vibration directions for the complete figure are given in Fig. 1.6.4.12 (c). Considering first the isogyres (brushes), if the optic axial plane lies N–S, as in Fig. 1.6.4.13 (a), clearly the isogyres form a cross ...

Measuring refractive indices
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.5, p. [ doi:10.1107/97809553602060000905 ]
...

Uniaxial figures
Glazer, A. M. and Cox, K. G., International Tables for Crystallography (2013). Vol. D, Section 1.6.4.12, p. [ doi:10.1107/97809553602060000905 ]
will be obvious because all colours lie well within the first order (Figs. 1.6.4.9 a and b) . Fig. 1.6.4.10 (a) illustrates, by reference to the indicatrix, the way in which the vibration directions of the o and e rays are disposed ...

Page: 1 2 Next powered by swish-e
























































to end of page
to top of page