
1.2. General introduction to the subgroups of space groups

BY HANS WONDRATSCHEK

1.2.1. General remarks

The performance of simple vector and matrix calculations, as
well as elementary operations with groups, are nowadays common
practice in crystallography, especially since computers and suit-
able programs have become widely available. The authors of this
volume therefore assume that the reader has at least some practi-
cal experience with matrices and groups and their crystallographic
applications. The explanations and definitions of the basic terms
of linear algebra and group theory in these first sections of this
introduction are accordingly short. Rather than replace an elemen-
tary textbook, these first sections aim to acquaint the reader with
the method of presentation and the terminology that the authors
have chosen for the tables and graphs of this volume. The con-
cepts of groups, their subgroups, isomorphism, coset decomposi-
tion and conjugacy are considered to be essential for the use of the
tables and for their practical application to crystal structures; for a
deeper understanding the concept of normalizers is also necessary.
Frequently, however, an ‘intuitive feeling’ obtained by practical
experience may replace a full comprehension of the mathemati-
cal meaning. From Section 1.2.6 onwards, the presentation will
be more detailed because the subjects are more specialized (but
mostly not more difficult) and are seldom found in textbooks.

1.2.2. Mappings and matrices

1.2.2.1. Crystallographic symmetry operations

A crystal is a finite block of an infinite periodic array of atoms
in physical space. The infinite periodic array is called the crystal
pattern. The finite block is called the macroscopic crystal.

Periodicity implies that there are translations which map the
crystal pattern onto itself. Geometric mappings have the property
that for each point P of the space, and thus of the object, there is
a uniquely determined point P̃, the image point. The mapping is
reversible if each image point P̃ is the image of one point P only.

Translations belong to a special category of mappings which
leave all distances in the space invariant (and thus within an object
and between objects in the space). Furthermore, a mapping of an
object onto itself (German: Deckoperation) is the basis of the con-
cept of geometric symmetry. This is expressed by the following
two definitions.

Definition 1.2.2.1.1. A mapping is called a motion, a rigid motion
or an isometry if it leaves all distances invariant (and thus all
angles, as well as the size and shape of an object). In this vol-
ume the term ‘isometry’ is used. �

An isometry is a special kind of affine mapping. In an affine
mapping, parallel lines are mapped onto parallel lines; lengths and
angles may be distorted but quotients of lengths on the same line
are preserved. In Section 1.2.2.3, the description of affine map-
pings is discussed, because this type of description also applies to
isometries. Affine mappings are important for the classification of
crystallographic symmetries, cf. Section 1.2.5.2.

Definition 1.2.2.1.2. A mapping is called a symmetry operation
of an object if

(1) it is an isometry,
(2) it maps the object onto itself. �

Instead of ‘maps the object onto itself’, one frequently says
‘leaves the object invariant (as a whole)’. This does not mean that
each point of the object is mapped onto itself; rather, the object
is mapped in such a way that an observer cannot distinguish the
states of the object before and after the mapping.

Definition 1.2.2.1.3. A symmetry operation of a crystal pattern is
called a crystallographic symmetry operation. �

The symmetry operations of a macroscopic crystal are also crys-
tallographic symmetry operations, but they belong to another kind
of mapping which will be discussed in Section 1.2.5.4.

There are different types of isometries which may be crystallo-
graphic symmetry operations. These types are described and dis-
cussed in many textbooks of crystallography and in mathematical,
physical and chemical textbooks. They are listed here without fur-
ther treatment. Fixed points are very important for the characteri-
zation of isometries.

Definition 1.2.2.1.4. A point P is a fixed point of a mapping if
it is mapped onto itself, i.e. the image point P̃ is the same as the
original point P: P̃ = P. �

The set of all fixed points of an isometry may be the whole
space, a plane in the space, a straight line, a point, or the set may
be empty (no fixed point).

The following kinds of isometries exist:

(1) The identity operation, which maps each point of the space
onto itself. It is a symmetry operation of every object and,
although trivial, is indispensable for the group properties
which are discussed in Section 1.2.3.

(2) A translation t which shifts every object. A translation is char-
acterized by its translation vector t and has no fixed point: if x
is the column of coordinates of a point P, then the coordinates
x̃ of the image point P̃ are x̃ = x + t. If a translation is a sym-
metry operation of an object, the object extends infinitely in
the directions of t and −t. A translation preserves the ‘hand-
edness’ of an object, e.g. it maps any right-hand glove onto a
right-hand one and any left-hand glove onto a left-hand one.

(3) A rotation is an isometry that leaves one line fixed pointwise.
This line is called the rotation axis. The degree of rotation
about this axis is described by its rotation angle ϕ. In particu-
lar, a rotation is called an N-fold rotation if the rotation angle
is ϕ = k × 360◦/N, where k and N are relatively prime inte-
gers. A rotation preserves the ‘handedness’ of any object.

(4) A screw rotation is a rotation coupled with a translation par-
allel to the rotation axis. The rotation axis is now called the
screw axis. The translation vector is called the screw vector.
A screw rotation has no fixed points. The screw axis is invari-
ant as a whole under the screw rotation but not pointwise.

(5) An N-fold rotoinversion is an N-fold rotation coupled with
inversion through a point on the rotation axis. This point is
called the centre of the rotoinversion. For N �= 2 it is the only
fixed point. The axis of the rotation is invariant as a whole
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under the rotoinversion and is called its rotoinversion axis. A
rotoinversion changes the handedness by its inversion compo-
nent: it maps any right-hand glove onto a left-hand one and
vice versa. Performed twice it results in a rotation. Special
rotoinversions are those for N = 1 and N = 2, which are dealt
with separately.

(6) The inversion can be considered as a onefold rotoinversion
(N = 1). The fixed point is called the inversion centre or the
centre of symmetry.

(7) A twofold rotoinversion (N = 2) is called a reflection or a
reflection through a plane. It is an isometry which leaves a
plane perpendicular to the twofold rotoinversion axis fixed
pointwise. This plane is called the reflection plane or mir-
ror plane and it intersects the rotation axis in the centre of
the rotoinversion. Its orientation is described by the direction
of its normal vector, i.e. of the rotation axis. For a twofold
rotoinversion, neither the rotation nor the inversion are sym-
metry operations themselves. As for any other rotoinversion,
the reflection changes the handedness of an object.

(8) A glide reflection is a reflection through a plane coupled with
a translation parallel to this plane. The translation vector is
called the glide vector. A glide reflection changes the hand-
edness and has no fixed point. The former reflection plane is
now called the glide plane. Under a glide reflection, the glide
plane is invariant as a whole but not pointwise.

Symmetry operations of crystal patterns may belong to any of
these isometries. The set of all symmetry operations of a crys-
tal pattern has the following properties: performing two (and thus
more) symmetry operations one after the other results in another
symmetry operation. Moreover, there is the identity operation in
this set, i.e. an operation that leaves every point of the space and
thus of the crystal pattern fixed. Finally, for any symmetry opera-
tion of an object there is an ‘inverse’ symmetry operation by which
its effect is reversed. These properties are necessary for the appli-
cation of group theory, cf. Section 1.2.3.

1.2.2.2. Coordinate systems and coordinates

To describe mappings analytically, one introduces a coordinate
system {O, a, b, c}, consisting of three linearly independent (i.e.
not coplanar) basis vectors a, b, c (or a1, a2, a3) and an origin
O. For the plane (two-dimensional space) an origin and two lin-
early independent (i.e. not parallel) basis vectors a, b (or a1, a2)
are chosen. Referred to this coordinate system, each point P can
be described by three (or two for the plane) coordinates x, y, z (or
x1, x2, x3). An object, e.g. a crystal, can now be described by a
continuous or discontinuous function of the coordinates such as
the electron density or the coordinates of the centres of the atoms.
A mapping can be regarded as an instruction of how to calculate
the coordinates x̃, ỹ, z̃ of the image point X̃ from the coordinates
x, y, z of the original point X .

In contrast to the practice in physics and chemistry, a non-
Cartesian coordinate system is usually chosen in crystallography.
The primary aim of the choice of the crystallographic coordinate
system is to describe the crystal pattern and its set of all symme-
try operations in a simple way. This aim holds in particular for the
infinitely many symmetry translations of the crystal pattern, which
form its translation group. Secondary to this aim are equality of
the lengths of, and right angles between, the basis vectors.

The vector t belonging to the translation t is called a transla-
tion vector or a lattice vector. The set of all translation vectors of
the crystal pattern is called its vector lattice L. Both the transla-

tion group and the vector lattice are useful tools for describing the
periodicity of the crystals.

For the description of a vector lattice several kinds of bases are
in use. Orthonormal bases are not the most convenient, because the
coefficients of the lattice vectors may then be any real number. The
coefficients of the lattice vectors are more transparent if the basis
vectors themselves are lattice vectors.

Definition 1.2.2.2.1. A basis which consists of lattice vectors of a
crystal pattern is called a lattice basis or a crystallographic basis.

�
Referred to a lattice basis, each lattice vector t ∈ L is a linear

combination of the basis vectors with rational coefficients. One
can even select special bases such that the coefficients of all lattice
vectors are integers.

Definition 1.2.2.2.2. A crystallographic basis is called a primitive
basis if every lattice vector has integer coefficients. �

A fundamental feature of vector lattices is that for any lattice
in a dimension greater than one an infinite number of primitive
bases exists. With certain rules, the choice of a primitive basis can
be made unique (reduced bases). In practice, however, the conven-
tional bases are not always primitive; the choice of a conventional
basis is determined by the matrix parts of the symmetry operations,
cf. Section 1.2.5.1.

1.2.2.3. The description of mappings

The instruction for the calculation of the coordinates of X̃ from
the coordinates of X is simple for an affine mapping and thus for
an isometry. The equations are

x̃ = W11 x + W12 y + W13 z + w1

ỹ = W21 x + W22 y + W23 z + w2

z̃ = W31 x + W32 y + W33 z + w3,
(1.2.2.1)

where the coefficients Wik and wj are constant. These equations
can be written using the matrix formalism:

⎛
⎝

x̃
ỹ
z̃

⎞
⎠ =

⎛
⎝

W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞
⎠

⎛
⎝

x
y
z

⎞
⎠ +

⎛
⎝

w1

w2

w3

⎞
⎠ . (1.2.2.2)

This matrix equation is usually abbreviated by

x̃ = W x + w, (1.2.2.3)

where

x̃ =

⎛
⎝

x̃
ỹ
z̃

⎞
⎠, x =

⎛
⎝

x
y
z

⎞
⎠, w =

⎛
⎝

w1

w2

w3

⎞
⎠ and W =

⎛
⎝

W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞
⎠.

Definition 1.2.2.3.1. The matrix W is called the linear part or
matrix part, the column w is the translation part or column part of
a mapping. �

In equations (1.2.2.1) and (1.2.2.3), the coordinates are mixed
with the quantities describing the mapping, designated by the let-
ters Wik and wj or W and w. Therefore, one prefers to write equa-
tion (1.2.2.3) in the form

x̃ = (W, w) x or x̃ = {W |w} x. (1.2.2.4)

The symbols (W, w) and {W |w} which describe the mapping
referred to the chosen coordinate system are called the matrix–
column pair and the Seitz symbol.
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The formulae for the combination of affine mappings and for the
inverse of an affine mapping (regular matrix W) are obtained by

x̃ = W1 x + w1, ˜̃x = W2 x̃ + w2 = W3 x + w3

˜̃x = W2 (W1 x + w1) + w2 = W2 W1 x + W2w1 + w2.

From x̃ = W x + w, it follows that W−1 x̃ = x + W−1 w or
x = W−1 x̃ − W−1 w.

Using matrix–column pairs, this reads

(W3, w3) = (W2, w2) (W1, w1) = (W2W1, W2w1 + w2)
(1.2.2.5)

and

x = (W, w)−1x̃ = (W′, w′)x̃

or
(W′, w′) = (W, w)−1 = (W−1, −W−1w). (1.2.2.6)

One finds from equations (1.2.2.5) and (1.2.2.6) that the linear
parts of the matrix–column pairs transform as one would expect:

(1) the linear part of the product of two matrix–column pairs
is the product of the linear parts, i.e. if (W3, w3) =
(W2, w2) (W1, w1) then W3 = W2 W1;

(2) the linear part of the inverse of a matrix–column pair is the
inverse of the linear part, i.e. if (X, x) = (W, w)−1, then
X = W−1. [This relation is included in the first one: from
(W, w) (X, x) = (W X, W x + w) = (I, o) follows X = W−1.
Here I is the unit matrix and o is the column consisting of
zeroes].

These relations will be used in Section 1.2.5.4.
For the column parts, equations (1.2.2.5) and (1.2.2.6) are less

convenient:

(1) w3 = W2 w1 + w2; (2) w′ = −W−1w.

Because of the inconvenience of these relations, it is often
preferable to use ‘augmented’ matrices, by which one can describe
the combination of affine mappings and the inverse mapping by
the equations of the usual matrix multiplication. These matrices
are introduced in the next section.

1.2.2.4. Matrix–column pairs and (n + 1) × (n + 1) matrices

It is natural to combine the matrix part and the column part
describing an affine mapping to form a (3 × 4) matrix, but such
matrices cannot be multiplied by the usual matrix multiplication
and cannot be inverted. However, if one supplements the (3 × 4)
matrix by a fourth row ‘0 0 0 1’, one obtains a (4×4) square matrix
which can be combined with the analogous matrices of other map-
pings and can be inverted. These matrices are called augmented
matrices and are designated by open-face letters in this volume:

�=

⎛
⎜⎜⎝

W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3

0 0 0 1

⎞
⎟⎟⎠, �̃ =

⎛
⎜⎜⎝

x̃
ỹ
z̃
1

⎞
⎟⎟⎠, � =

⎛
⎜⎜⎝

x
y
z
1

⎞
⎟⎟⎠.

(1.2.2.7)
In order to write equation (1.2.2.3) as �̃ = �� with the

augmented matrices �, the columns x̃ and x also have to be
extended to the augmented columns � and �̃. Equations (1.2.2.5)
and (1.2.2.6) then become

�3 = �2 �1 and (�)−1 = (�−1). (1.2.2.8)

The vertical and horizontal lines in the matrix have no mathe-
matical meaning. They are simply a convenience for separating the
matrix part from the column part and from the row ‘0 0 0 1’, and
could be omitted.

Augmented matrices are very useful when writing down general
formulae which then become more transparent and more elegant.
However, the matrix–column pair formalism is, in general, advan-
tageous for practical calculations.

For the augmented columns of vector coefficients, see Section
1.2.2.6.

1.2.2.5. Isometries

Isometries are special affine mappings, as in Definition
1.2.2.1.1. The matrix W of an isometry has to fulfil conditions
which depend on the coordinate basis. These conditions are:

(1) A basis a1, a2, a3 is characterized by the scalar prod-
ucts (a j ak) of its basis vectors or by its lattice param-
eters a, b, c, α, β and γ. Here a, b, c are the lengths of
the basis vectors a1, a2, a3 and α, β and γ are the angles
between a2 and a3, a3 and a1, a1 and a2, respectively. The
metric matrix M (called G in IT A, Chapter 9.1) is the (3× 3)
matrix which consists of the scalar products of the basis vec-
tors:

M =

⎛
⎝

a2 a b cos γ a c cos β
b a cos γ b2 b c cos α
c a cos β c b cos α c2

⎞
⎠ .

If W is the matrix part of an isometry, referred to the basis
(a1, a2, a3), then W must fulfil the condition W T M W = M,
where W T is the transpose of W.

(2) For the determinant of W, det(W) = ±1 must hold; det(W) =
+1 for the identity, translations, rotations and screw rotations;
det(W) = −1 for inversions, reflections, glide reflections and
rotoinversions.

(3) For the trace, tr(W) = W11 + W22 + W33 = ±(1 + 2 cos ϕ)
holds, where ϕ is the rotation angle; the + sign applies if
det(W) = +1 and the − sign if det(W) = −1.

Algorithms for the determination of the kind of isometry from a
given matrix–column pair and for the determination of the matrix–
column pair for a given isometry can be found in IT A, Part 11 or
in Hahn & Wondratschek (1994).

1.2.2.6. Vectors and vector coefficients

In crystallography, vectors and their coefficients as well as
points and their coordinates are used for the description of crystal
structures. Vectors represent translation shifts, distance and Patter-
son vectors, reciprocal-lattice vectors etc. With respect to a given
basis a vector has three coefficients. In contrast to the coordinates
of a point, these coefficients do not change if the origin of the coor-
dinate system is shifted. In the usual description by columns, the
vector coefficients cannot be distinguished from the point coor-
dinates, but in the augmented-column description the difference
becomes visible: the vector from the point P to the point Q has the
coefficients v1 = q1− p1, v2 = q2− p2, v3 = q3− p3, 1−1. Thus,
the column of the coefficients of a vector is not augmented by ‘1’
but by ‘0’. Therefore, when the point P is mapped onto the point
P̃ by x̃ = W x + w according to equation (1.2.2.3), then the vector

v =
−→
P Q is mapped onto the vector ṽ =

−→
P̃ Q̃ by transforming its

coefficients by ṽ = W v, because the coefficients wj are multiplied
by the number ‘0’ augmenting the column v = (v j). Indeed, the
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distance vector v =
−→
P Q is not changed when the whole space is

mapped onto itself by a translation.

Remarks:

(1) The difference in transformation behaviour between the point
coordinates x and the vector coefficients v is not visible in the
equations where the symbols � and � are used, but is obvious
only if the columns are written in full, viz

⎛
⎜⎜⎝

x1

x2

x3

1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

v1

v2

v3

0

⎞
⎟⎟⎠ .

(2) The transformation behaviour of the vector coefficients is also
apparent if the vector is understood to be a translation vector
and the transformation behaviour of the translation is consid-
ered as in the last paragraph of the next section.

(3) The transformation ṽ = W v is called an orthogonal mapping
if W is the matrix part of an isometry.

1.2.2.7. Origin shift and change of the basis

It is in general advantageous to refer crystallographic objects
and their symmetries to the most appropriate coordinate system.
The best coordinate system may be different for different steps of
the calculations and for different objects which have to be con-
sidered simultaneously. Therefore, a change of the origin and/or
the basis are frequently necessary when treating crystallographic
problems. Here the formulae for the influence of an origin shift
and a change of basis on the coordinates, on the matrix–column
pairs of mappings and on the vector coefficients are only stated;
the equations are derived in detail in IT A Chapters 5.2 and 5.3,
and in Hahn & Wondratschek (1994).

Let a coordinate system be given with a basis (a1, a2, a3)T and
an origin O.1 Referred to this coordinate system, the column of
coordinates of a point P is x; the matrix and column parts describ-
ing a symmetry operation are W and w according to equations
(1.2.2.1) to (1.2.2.3), and the column of vector coefficients is v,
see Section 1.2.2.6. A new coordinate system may be introduced
with the basis (a′

1, a′
2, a′

3)
T and the origin O′. Referred to the new

coordinate system, the column of coordinates of the point P is x′,
the symmetry operation is described by W′ and w′ and the column
of vector coefficients is v′.

Let p =
−→
O O′ be the column of coefficients for the vector from

the old origin O to the new origin O′ and let

P =

⎛
⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎠ (1.2.2.9)

be the matrix of a basis change, i.e. the matrix that relates the new
basis (a′

1, a′
2, a′

3)
T to the old basis (a1, a2, a3)T according to

(a′
1, a′

2, a′
3) T = (a1, a2, a3) T P = (a1, a2, a3) T

⎛
⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎠ .

(1.2.2.10)

1 In this volume, point coordinates and vector coefficients are thought of as
columns in matrix multiplication. Therefore, columns are considered to be ‘stan-
dard’. These ‘columns’ are not marked, even if they are written in a row. To com-
ply with the rules of matrix multiplication, rows are also introduced. These rows of
symbols (e.g. vector coefficients of reciprocal space, i.e. Miller indices, or a set of
basis vectors of direct space) are ‘transposed relative to columns’ and are, therefore,
marked (h, k, l )T or (a, b, c)T, even if they are written in a row.

Then the following equations hold:

x′ = P−1x − P−1p or x = P x′ + p; (1.2.2.11)

W ′ = P−1 W P or W = P W ′ P−1; (1.2.2.12)

w′ = P−1(w + (W − I) p) or w = P w′ − (W − I) p. (1.2.2.13)

For the columns of vector coefficients v and v′, the following holds:

v′ = P−1v or v = P v′, (1.2.2.14)

i.e. an origin shift does not change the vector coefficients.
These equations read in the augmented-matrix formalism

�
′ = �

−1
�; �′ = �

−1
��; �′ = �

−1
�. (1.2.2.15)

For the difference in the transformation behaviour of point coor-
dinates and vector coefficients, see the remarks at the end of Sec-
tion 1.2.2.6. A vector v can be regarded as a translation vector; its
translation is then described by (I, v), i.e. W = I, w = v. It can
be shown using equation (1.2.2.13) that the translation and thus
the translation vector are not changed under an origin shift, (I, p),
because (I, v)′ = (I, v) holds. Moreover, under a general coor-
dinate transformation the origin shift is not effective: in equation
(1.2.2.13) only v′ = P−1v remains because of the equality W = I.

1.2.3. Groups

Group theory is the proper tool for studying symmetry in science.
The symmetry group of an object is the set of all isometries (rigid
motions) which map that object onto itself. If the object is a crystal,
the isometries which map it onto itself (and also leave it invariant
as a whole) are the crystallographic symmetry operations.

There is a huge amount of literature on group theory and its
applications. The book Introduction to Group Theory by Leder-
mann (1976) is recommended. The book Symmetry of Crystals.
Introduction to International Tables for Crystallography, Vol. A by
Hahn & Wondratschek (1994) describes a way in which the data of
IT A can be interpreted by means of matrix algebra and elementary
group theory. It may also help the reader of this volume.

1.2.3.1. Some properties of symmetry groups

The geometric symmetry of any object is described by a group
G. The symmetry operations g j ∈ G are the group elements, and
the set {g j ∈ G} of all symmetry operations fulfils the group pos-
tulates. [A ‘symmetry element’ in crystallography is not a group
element of a symmetry group but is a combination of a geometric
object with that set of symmetry operations which leave the geo-
metric object invariant, e.g. an axis with its threefold rotations or a
plane with its glide reflections etc., cf. Flack et al. (2000).] Groups
will be designated by upper-case calligraphic script letters G, H
etc. Group elements are represented by lower-case slanting sans
serif letters g, h etc.

The result gr of the composition of two elements g j, gk ∈ G will
be called the product of g j and gk and will be written gr = gk g j.
The first operation is the right factor because the point coordinates
or vector coefficients are written as columns on which the matrices
of the symmetry operations are applied from the left side.

The law of composition in the group is the successive applica-
tion of the symmetry operations.

The group postulates are shown to hold for symmetry groups:

(1) The closure, i.e. the property that the composition of any two
symmetry operations results in a symmetry operation again,
is always fulfilled for geometric symmetries: if g j ∈ G and
gk ∈ G, then g j gk = gr ∈ G also holds.
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