International
Tables for
Crystallography
Volume A1
Symmetry relations between space groups
Edited by Hans Wondratschek and Ulrich Müller

International Tables for Crystallography (2006). Vol. A1. ch. 1.2, p. 8   | 1 | 2 |

Section 1.2.2.5. Isometries

Hans Wondratscheka*

a Institut für Kristallographie, Universität, D-76128 Karlsruhe, Germany
Correspondence e-mail: wondra@physik.uni-karlsruhe.de

1.2.2.5. Isometries

| top | pdf |

Isometries are special affine mappings, as in Definition 1.2.2.1.1[link]. The matrix W of an isometry has to fulfil conditions which depend on the coordinate basis. These conditions are:

  • (1) A basis [{\bf a}_1, \, {\bf a}_2, \, {\bf a}_3] is characterized by the scalar products [({\bf a}_j \, {\bf a}_k)] of its basis vectors or by its lattice parameters [a,\,b,\,c,\,\alpha,\, \beta] and [\gamma]. Here [a,\,b,\,c] are the lengths of the basis vectors [{\bf a}_1,\,{\bf a}_2,\,{\bf a}_3] and [\alpha,\,\beta] and [\gamma] are the angles between [{\bf a}_2] and [{\bf a}_3,\, {\bf a}_3] and [{\bf a}_1,\,{\bf a}_1] and [{\bf a}_2], respectively. The metric matrix M (called G in IT A, Chapter 9.1[link] ) is the [(3\times3)] matrix which consists of the scalar products of the basis vectors: [{\bi M} = \left (\matrix{a^{2} & a\,b\,\cos\gamma & a\,c\,\cos\beta \cr b\,a\,\cos\gamma & b^{2} & b\,c\,\cos\alpha \cr c\,a\,\cos\beta & c\,b\,\cos\alpha & c^{2}} \right). ]If W is the matrix part of an isometry, referred to the basis ([{\bf a}_1,\ {\bf a}_2,\ {\bf a}_3]), then W must fulfil the condition [{\bi W}^{\rm T}\,\,{\bi M}\,{\bi W} = {\bi M}], where [{\bi W}^{\rm T}] is the transpose of W.

  • (2) For the determinant of W, [\det({\bi W}) = \pm{1}] must hold; [\det({\bi W}) = + 1] for the identity, translations, rotations and screw rotations; [\det({\bi W}) = -1] for inversions, reflections, glide reflections and rotoinversions.

  • (3) For the trace, [\rm{tr}({\bi W}) = W_{11} + W_{22} + W_{33} = \pm(1 + 2 \cos{\varphi})] holds, where [\varphi] is the rotation angle; the + sign applies if [\det({\bi W}) = + 1] and the − sign if [\det({\bi W}) = -1].

Algorithms for the determination of the kind of isometry from a given matrix–column pair and for the determination of the matrix–column pair for a given isometry can be found in IT A, Part 11[link] or in Hahn & Wondratschek (1994[link]).

References

First citation Hahn, Th. & Wondratschek, H. (1994). Symmetry of crystals. Introduction to International Tables for Crystallography, Vol. A. Sofia: Heron Press.Google Scholar








































to end of page
to top of page