
1.2. GENERAL INTRODUCTION TO THE SUBGROUPS OF SPACE GROUPS

The space groups are of different complexity. The simplest ones
are the symmorphic space groups (not to be confused with ‘iso-
morphic’ space groups) according to the following definition:

Definition 1.2.5.3.5. A space group G is called symmorphic if
representatives gk of all cosets T (G) gk can be found such that the
set {gk} of all representatives forms a group. �

The group {gk} is finite and thus leaves a point F fixed. In the
standard setting of any symmorphic space group such a point F is
chosen as the origin. Thus, the translation parts of the elements gk

consist of zeroes only.
If a space group is symmorphic then all space groups of its

type are symmorphic. Therefore, one can speak of ‘symmorphic
space-group types’. Symmorphic space groups can be recognized
easily by their HM symbols: they contain an unmodified point-
group symbol: rotations, reflections, inversions and rotoinversions
but no screw rotations or glide reflections. There are 73 symmor-
phic space-group types of dimension three and 13 of dimension
two; none of them show enantiomorphism.

One frequently speaks of ‘the 230 space groups’ or ‘the 17 plane
groups’ and does not distinguish between the terms ‘space group’
and ‘space-group type’. This is very often possible and is also done
in this volume in order to make the explanations less long-winded.
However, occasionally the distinction is indispensable in order to
avoid serious difficulties of comprehension. For example, the sen-
tence ‘A space group is a proper subgroup of itself’ is incompre-
hensible, whereas the sentence ‘A space group and its proper sub-
group belong to the same space-group type’ makes sense.

1.2.5.4. Point groups and crystal classes

If the point coordinates are mapped by an isometry and its
matrix–column pair, the vector coefficients are mapped by the lin-
ear part, i.e. by the matrix alone, cf. Section 1.2.2.6. Because the
number of its elements is infinite, a space group generates from one
point an infinite set of symmetry-equivalent points by its matrix–
column pairs. Because the number of matrices of the linear parts
is finite, the group of matrices generates from one vector a finite
set of symmetry-equivalent vectors, e.g. the vectors normal to cer-
tain planes of the crystal. These planes determine the morphology
of the ideal macroscopic crystal and its cleavage; the centre of the
crystal represents the zero vector. When the symmetry of a crys-
tal can only be determined by its macroscopic properties, only the
symmetry group of the macroscopic crystal can be found. All its
symmetry operations leave at least one point of the crystal fixed,
viz its centre of mass. Therefore, this symmetry group was called
the point group of the crystal, although its symmetry operations are
those of vector space, not of point space. Although misunderstand-
ings are not rare, this name is still used in today’s crystallography
for historical reasons.7

Let a conventional coordinate system be chosen and the ele-
ments g j ∈ G be represented by the matrix–column pairs (W j, w j),
with the representation of the translations t k ∈ T (G) by the pairs
(I, tk). Then the composition of (W j, w j) with all translations
forms an infinite set {(I, tk) (W j, w j) = (W j, w j + tk)} of sym-
metry operations which is a right coset of the coset decomposition
(G : T (G)). From this equation it follows that the elements of the
same coset of the decomposition (G : T (G)) have the same linear
part. On the other hand, elements of different cosets have differ-
ent linear parts if T (G) contains all translations of G. Thus, each

7 The term point group is also used for a group of symmetry operations of point
space, which is better called a site-symmetry group and which is the group describ-
ing the symmetry of the surroundings of a point in point space.

coset can be characterized by its linear part. It can be shown from
equations (1.2.2.5) and (1.2.2.6) that the linear parts form a group
which is isomorphic to the factor group G/T (G), i.e. to the group
of the cosets.

Definition 1.2.5.4.1. A group of linear parts, represented by a
group of matrices W j, is called a point group P . If the linear
parts are those of the matrix–column pairs describing the symme-
try operations of a space group G, the group is called the point
group PG of the space group G. The point groups that can belong
to space groups are called crystallographic point groups. �

According to Definition 1.2.5.4.1, the factor group G/T (G) is
isomorphic to the point group PG . This property is exploited in
the graphs of translationengleiche subgroups of space groups, cf.
Chapter 2.4 and Section 2.1.7.2.

All point groups in the following sections are crystallographic
point groups. The maximum order of a crystallographic point
group is 48 in three-dimensional space and 12 in two-dimensional
space.

As with space groups, there are also an infinite number of crys-
tallographic point groups which may be classified into a finite
number of point-group types. This cannot be done by isomorphism
because geometrically different point groups may be isomorphic.
For example, point groups consisting of the identity with the inver-
sion {I, I} or with a twofold rotation {I, 2} or with a reflection
through a plane {I, m} are all isomorphic to the (abstract) group of
order 2. As for space groups, the classification may be performed,
however, referring the point groups to corresponding vector bases.
As translations do not occur among the point-group operations,
one may choose any basis for the description of the symmetry
operations by matrices. One takes the basis of {W ′} as given and
transforms the basis of {W} to the basis corresponding to that of
{W ′}. This leads to the definition:

Definition 1.2.5.4.2. Two crystallographic point groups PG and
P ′

G ′ belong to the same point-group type or to the same crystal
class of point groups if there is a real non-singular matrix P which
maps a matrix group {W} of PG onto a matrix group {W′} of P ′

G ′

by the transformation {W′} = P−1 {W}P. �
Point groups can be classified by Definition 1.2.5.4.2. Fur-

ther space groups may be classified into ‘crystal classes of space
groups’ according to their point groups:

Definition 1.2.5.4.3. Two space groups belong to the same crys-
tal class of space groups if their point groups belong to the same
crystal class of point groups. �

Whether two space groups belong to the same crystal class
or not can be worked out from their standard HM symbols:
one removes the lattice parts from these symbols as well as the
constituents ‘1’ from the symbols of trigonal space groups and
replaces all constituents for screw rotations and glide reflections
by those for the corresponding pure rotations and reflections. The
symbols obtained in this way are those of the corresponding point
groups. If they agree, the space groups belong to the same crystal
class. The space groups also belong to the same crystal class if the
point-group symbols belong to the pair 42m and 4m2 or to the pair
62m and 6m2.

There are 32 classes of three-dimensional crystallographic point
groups and 32 crystal classes of space groups, and ten classes
of two-dimensional crystallographic point groups and ten crystal
classes of plane groups.

The distribution into crystal classes classifies space-group types
– and thus space groups – and crystallographic point groups. It
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1. SPACE GROUPS AND THEIR SUBGROUPS

does not classify the infinite set of all lattices into a finite num-
ber of lattice types, because the same lattice may belong to space
groups of different crystal classes. For example, the same lattice
may be that of a space group of type P1 (of crystal class 1) and
that of a space group of type P1 (of crystal class 1).

Nevertheless, there is also a definition of the ‘point group of a
lattice’. Let a vector lattice L of a space group G be referred to a
lattice basis. Then the linear parts W of the matrix–column pairs
(W, w) of G form the point group PG . If (W, w) maps the space
group G onto itself, then the linear part W maps the (vector) lattice
L onto itself. However, there may be additional matrices which
also describe symmetry operations of the lattice L. For example,
the point group PG of a space group of type P1 consists of the
identity 1 only. However, with any vector t ∈ L, the negative vec-
tor −t ∈ L also belongs to L. Therefore, the lattice L is always
centrosymmetric and has the inversion 1 as a symmetry operation
independent of the symmetry of the space group.

Definition 1.2.5.4.4. The set of all orthogonal mappings with
matrices W which map a lattice L onto itself is called the point
group of the lattice L or the holohedry of the lattice L. A crystal
class of point groups PG is called a holohedral crystal class if it
contains a holohedry. �

There are seven holohedral crystal classes in the space: 1,
2/m, mmm, 4/mmm, 3m, 6/mmm and m3m. Their lattices are
called triclinic, monoclinic, orthorhombic, tetragonal, rhombohe-
dral, hexagonal and cubic, respectively. There are four holohe-
dral crystal classes in the plane: 2, 2mm, 4mm and 6mm. Their
two-dimensional lattices (or nets) are called oblique, rectangular,
square and hexagonal, respectively.

The lattices can be classified into lattice types or Bravais types,
mostly called Bravais lattices, or into lattice systems (called Bra-
vais systems in editions 1 to 4 of IT A). These classifications are
not discussed here because they are not directly relevant to the
classification of the space groups. This is because the lattice sym-
metry is not necessarily typical for the symmetry of its space group
but may accidentally be higher. For example, the lattice of a mon-
oclinic crystal may be accidentally orthorhombic (only for certain
values of temperature and pressure). In Sections 8.2.5 and 8.2.7 of
IT A the ‘typical lattice symmetry’ of a space group is defined.

1.2.5.5. Crystal systems and crystal families

The example of P1 mentioned above shows that the point group
of the lattice may be systematically of higher order than that of
its space group. There are obviously point groups and thus space
groups that belong to a holohedral crystal class and those that
do not. The latter can be assigned to a holohedral crystal class
uniquely according to the following definition:8

Definition 1.2.5.5.1. A crystal class C of a space group G is either
holohedral H or it can be assigned uniquely to H by the condition:
any point group of C is a subgroup of a point group of H but not a
subgroup of a holohedral crystal class H ′ of smaller order. The set
of all crystal classes of space groups that are assigned to the same
holohedral crystal class is called a crystal system of space groups.

�
The 32 crystal classes of space groups are classified into seven

crystal systems which are called triclinic, monoclinic, orthorhom-

8 This assignment does hold for low dimensions of space at least up to dimen-
sion 4. A dimension-independent definition of the concepts of ‘crystal system’ and
‘crystal family’ is found in IT A, Chapter 8.2, where the classifications are treated
in more detail.

bic, tetragonal, trigonal, hexagonal and cubic. There are four-
crystal systems of plane groups: oblique, rectangular, square and
hexagonal. Like the space groups, the crystal classes of point
groups are classified into the seven crystal systems of point groups.

Apart from accidental lattice symmetries, the space groups of
different crystal systems have lattices of different symmetry. As
an exception, the hexagonal primitive lattice occurs in both hexag-
onal and trigonal space groups as the typical lattice. Therefore,
the space groups of the trigonal and the hexagonal crystal systems
are more related than space groups from other different crystal sys-
tems. Indeed, in different crystallographic schools the term ‘crystal
system’ was used for different objects. One sense of the term was
the ‘crystal system’ as defined above, while another sense of the
old term ‘crystal system’ is now called a ‘crystal family’ accord-
ing to the following definition [for definitions that are also valid
in higher-dimensional spaces, see Brown et al. (1978) or IT A,
Chapter 8.2]:

Definition 1.2.5.5.2. In three-dimensional space, the classifica-
tion of the set of all space groups into crystal families is the same
as that into crystal systems with the one exception that the trigonal
and hexagonal crystal systems are united to form the hexagonal
crystal family. There is no difference between crystal systems and
crystal families in the plane. �

The partition of the space groups into crystal families is the
most universal one. The space groups and their types, their crys-
tal classes and their crystal systems are classified by the crystal
families. Analogously, the crystallographic point groups and their
crystal classes and crystal systems are classified by the crystal fam-
ilies of point groups. Lattices, their Bravais types and lattice sys-
tems can also be classified into crystal families of lattices; cf. IT
A, Chapter 8.2.

1.2.6. Types of subgroups of space groups

1.2.6.1. Introductory remarks

Group–subgroup relations form an essential part of the applica-
tions of space-group theory. Let G be a space group and H < G
a proper subgroup of G. All maximal subgroups H < G of any
space group G are listed in Part 2 of this volume. There are dif-
ferent kinds of subgroups which are defined and described in this
section. The tables and graphs of this volume are arranged accord-
ing to these kinds of subgroups. Moreover, for the different kinds
of subgroups different data are listed in the subgroup tables and
graphs.

Let G j and H j be space groups of the space-group types G and
H. The group–subgroup relation G j > H j is a relation between the
particular space groups G j and H j but it can be generalized to the
space-group types G and H. Certainly, not every space group of
the type H will be a subgroup of every space group of the type G.
Nevertheless, the relation G j > H j holds for any space group of G
and H in the following sense: If G j > H j holds for the pair G j and
H j, then for any space group Gk of the type G a space group Hk

of the type H exists for which the corresponding relation Gk > Hk

holds. Conversely, for any space group Hm of the type H a space
group Gm of the type G exists for which the corresponding rela-
tion Gm > Hm holds. Only this property of the group–subgroup
relations made it possible to compile and arrange the tables of this
volume so that they are as concise as those of IT A.

1.2.6.2. Definitions and examples

‘Maximal subgroups’ have been introduced by Definition
1.2.4.1.2. The importance of this definition will become apparent
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