
1. SPACE GROUPS AND THEIR SUBGROUPS

does not classify the infinite set of all lattices into a finite num-
ber of lattice types, because the same lattice may belong to space
groups of different crystal classes. For example, the same lattice
may be that of a space group of type P1 (of crystal class 1) and
that of a space group of type P1 (of crystal class 1).

Nevertheless, there is also a definition of the ‘point group of a
lattice’. Let a vector lattice L of a space group G be referred to a
lattice basis. Then the linear parts W of the matrix–column pairs
(W, w) of G form the point group PG . If (W, w) maps the space
group G onto itself, then the linear part W maps the (vector) lattice
L onto itself. However, there may be additional matrices which
also describe symmetry operations of the lattice L. For example,
the point group PG of a space group of type P1 consists of the
identity 1 only. However, with any vector t ∈ L, the negative vec-
tor −t ∈ L also belongs to L. Therefore, the lattice L is always
centrosymmetric and has the inversion 1 as a symmetry operation
independent of the symmetry of the space group.

Definition 1.2.5.4.4. The set of all orthogonal mappings with
matrices W which map a lattice L onto itself is called the point
group of the lattice L or the holohedry of the lattice L. A crystal
class of point groups PG is called a holohedral crystal class if it
contains a holohedry. �

There are seven holohedral crystal classes in the space: 1,
2/m, mmm, 4/mmm, 3m, 6/mmm and m3m. Their lattices are
called triclinic, monoclinic, orthorhombic, tetragonal, rhombohe-
dral, hexagonal and cubic, respectively. There are four holohe-
dral crystal classes in the plane: 2, 2mm, 4mm and 6mm. Their
two-dimensional lattices (or nets) are called oblique, rectangular,
square and hexagonal, respectively.

The lattices can be classified into lattice types or Bravais types,
mostly called Bravais lattices, or into lattice systems (called Bra-
vais systems in editions 1 to 4 of IT A). These classifications are
not discussed here because they are not directly relevant to the
classification of the space groups. This is because the lattice sym-
metry is not necessarily typical for the symmetry of its space group
but may accidentally be higher. For example, the lattice of a mon-
oclinic crystal may be accidentally orthorhombic (only for certain
values of temperature and pressure). In Sections 8.2.5 and 8.2.7 of
IT A the ‘typical lattice symmetry’ of a space group is defined.

1.2.5.5. Crystal systems and crystal families

The example of P1 mentioned above shows that the point group
of the lattice may be systematically of higher order than that of
its space group. There are obviously point groups and thus space
groups that belong to a holohedral crystal class and those that
do not. The latter can be assigned to a holohedral crystal class
uniquely according to the following definition:8

Definition 1.2.5.5.1. A crystal class C of a space group G is either
holohedral H or it can be assigned uniquely to H by the condition:
any point group of C is a subgroup of a point group of H but not a
subgroup of a holohedral crystal class H ′ of smaller order. The set
of all crystal classes of space groups that are assigned to the same
holohedral crystal class is called a crystal system of space groups.

�
The 32 crystal classes of space groups are classified into seven

crystal systems which are called triclinic, monoclinic, orthorhom-

8 This assignment does hold for low dimensions of space at least up to dimen-
sion 4. A dimension-independent definition of the concepts of ‘crystal system’ and
‘crystal family’ is found in IT A, Chapter 8.2, where the classifications are treated
in more detail.

bic, tetragonal, trigonal, hexagonal and cubic. There are four-
crystal systems of plane groups: oblique, rectangular, square and
hexagonal. Like the space groups, the crystal classes of point
groups are classified into the seven crystal systems of point groups.

Apart from accidental lattice symmetries, the space groups of
different crystal systems have lattices of different symmetry. As
an exception, the hexagonal primitive lattice occurs in both hexag-
onal and trigonal space groups as the typical lattice. Therefore,
the space groups of the trigonal and the hexagonal crystal systems
are more related than space groups from other different crystal sys-
tems. Indeed, in different crystallographic schools the term ‘crystal
system’ was used for different objects. One sense of the term was
the ‘crystal system’ as defined above, while another sense of the
old term ‘crystal system’ is now called a ‘crystal family’ accord-
ing to the following definition [for definitions that are also valid
in higher-dimensional spaces, see Brown et al. (1978) or IT A,
Chapter 8.2]:

Definition 1.2.5.5.2. In three-dimensional space, the classifica-
tion of the set of all space groups into crystal families is the same
as that into crystal systems with the one exception that the trigonal
and hexagonal crystal systems are united to form the hexagonal
crystal family. There is no difference between crystal systems and
crystal families in the plane. �

The partition of the space groups into crystal families is the
most universal one. The space groups and their types, their crys-
tal classes and their crystal systems are classified by the crystal
families. Analogously, the crystallographic point groups and their
crystal classes and crystal systems are classified by the crystal fam-
ilies of point groups. Lattices, their Bravais types and lattice sys-
tems can also be classified into crystal families of lattices; cf. IT
A, Chapter 8.2.

1.2.6. Types of subgroups of space groups

1.2.6.1. Introductory remarks

Group–subgroup relations form an essential part of the applica-
tions of space-group theory. Let G be a space group and H < G
a proper subgroup of G. All maximal subgroups H < G of any
space group G are listed in Part 2 of this volume. There are dif-
ferent kinds of subgroups which are defined and described in this
section. The tables and graphs of this volume are arranged accord-
ing to these kinds of subgroups. Moreover, for the different kinds
of subgroups different data are listed in the subgroup tables and
graphs.

Let G j and H j be space groups of the space-group types G and
H. The group–subgroup relation G j > H j is a relation between the
particular space groups G j and H j but it can be generalized to the
space-group types G and H. Certainly, not every space group of
the type H will be a subgroup of every space group of the type G.
Nevertheless, the relation G j > H j holds for any space group of G
and H in the following sense: If G j > H j holds for the pair G j and
H j, then for any space group Gk of the type G a space group Hk

of the type H exists for which the corresponding relation Gk > Hk

holds. Conversely, for any space group Hm of the type H a space
group Gm of the type G exists for which the corresponding rela-
tion Gm > Hm holds. Only this property of the group–subgroup
relations made it possible to compile and arrange the tables of this
volume so that they are as concise as those of IT A.

1.2.6.2. Definitions and examples

‘Maximal subgroups’ have been introduced by Definition
1.2.4.1.2. The importance of this definition will become apparent
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1.2. GENERAL INTRODUCTION TO THE SUBGROUPS OF SPACE GROUPS

in the corollary to Hermann’s theorem, cf. Lemma 1.2.8.1.3. In this
volume only the maximal subgroups are listed for any plane and
any space group. A maximal subgroup of a plane group is a plane
group, a maximal subgroup of a space group is a space group. On
the other hand, a minimal supergroup of a plane group or of a space
group is not necessarily a plane group or a space group, cf. Section
2.1.6.

If the maximal subgroups are known for each space group, then
each non-maximal subgroup of a space group G with finite index
can in principle be obtained from the data on maximal subgroups.
A non-maximal subgroup H < G of finite index [i] is connected
with the original group G through a chain H = Zk < Zk−1 <
. . . < Z1 < Z0 = G, where each group Z j < Z j−1 is a maximal
subgroup of Z j−1, with the index [i j] = |Z j−1 : Z j|, j = 1, . . . , k.
The number k is finite and the relation i =

∏k
j=1 i j holds, i.e. the

total index [i] is the product of the indices i j.
According to Hermann (1929), the following types of subgroups

of space groups have to be distinguished:

Definition 1.2.6.2.1. A subgroup H of a space group G is called a
translationengleiche subgroup or a t-subgroup of G if the set T (G)
of translations is retained, i.e. T (H) = T (G), but the number of
cosets of G/T (G), i.e. the order P of the point group PG , is reduced
such that |G/T (G)| > |H/T (H)|. 9 �

The order of a crystallographic point group PG of the space
group G is always finite. Therefore, the number of the subgroups
of PG is also always finite and these subgroups and their relations
are displayed in well known graphs, cf. Chapter 2.4 and Section
2.1.7 of this volume. Because of the isomorphism between the
point group PG and the factor group G/T (G), the subgroup graph
for the point group PG is the same as that for the t-subgroups of G,
only the labels of the groups are different. For deviations between
the point-group graphs and the actual space-group graphs of Chap-
ter 2.4, cf. Section 2.1.7.2.

Example 1.2.6.2.2.
Consider a space group G of type P12/m1 referred to a conven-
tional coordinate system. The translation subgroup T (G) con-
sists of all translations with translation vectors t = ua+vb+wc,
where u, v, w run through all integer numbers. The coset
decomposition of (G : T (G)) results in the four cosets T (G),
T (G) 20, T (G) m0 and T (G) 10, where the right operations are
a twofold rotation 20 around the rotation axis passing through
the origin, a reflection m0 through a plane containing the ori-
gin and an inversion 10 with the inversion point at the origin,
respectively. The three combinations H1 = T (G) ∪ T (G) 20,
H2 = T (G) ∪ T (G) m0 and H3 = T (G) ∪ (T G) 10 each form
a translationengleiche maximal subgroup of G of index 2 with
the space-group symbols P121, P1m1 and P1, respectively.

Definition 1.2.6.2.3. A subgroup H < G of a space group G is
called a klassengleiche subgroup or a k-subgroup if the set T (G) of
all translations of G is reduced to T (H) < T (G) but all linear parts
of G are retained. Then the number of cosets of the decompositions
H/T (H) and G/T (G) is the same, i.e. |H/T (H)| = |G/T (G)|.
In other words: the order of the point group PH is the same as that
of PG . See also footnote 9. �

9 German: zellengleiche means ‘with the same cell’; translationengleiche means
‘with the same translations’; klassengleiche means ‘of the same (crystal) class’. Of
the different German declension endings only the form with terminal -e is used in
this volume. The terms zellengleiche and klassengleiche were introduced by Her-
mann (1929). The term zellengleiche was later replaced by translationengleiche
because of possible misinterpretations. In this volume they are sometimes abbrevi-
ated as t-subgroups and k-subgroups.

For a klassengleiche subgroup H < G, the cosets of the factor
group H/T (H) are smaller than those of G/T (G). Because T (H)
is still infinite, the number of elements of each coset is infinite but
the index |T (G) : T (H)| > 1 is finite. The number of k-subgroups
of G is always infinite.

Example 1.2.6.2.4.
Consider a space group G of the type C121, referred to a con-
ventional coordinate system. The set T (G) of all translations
can be split into the set Ti of all translations with integer coef-
ficients u, v and w and the set T f of all translations for which
the coefficients u and v are fractional. The set Ti forms a group;
the set T f is the other coset in the decomposition (T (G) : Ti) and
does not form a group. Let tC be the ‘centring translation’ with
the translation vector 1

2(a + b). Then T f can be written Ti tC .
Let 20 mean a twofold rotation around the rotation axis through
the origin. There are altogether four cosets of the decomposition
(G : Ti), which can be written now as Ti, T f = Ti tC , Ti 20 and
T f 20 = (Ti tC) 20 = Ti (tC 20). The union Ti ∪ (Ti tC) = TG
forms the translationengleiche maximal subgroup C1 (conven-
tional setting P1) of G of index 2. The union Ti ∪ (Ti 20) forms
the klassengleiche maximal subgroup P121 of G of index 2.
The union Ti ∪ (Ti(tC 20)) also forms a klassengleiche max-
imal subgroup of index 2. Its HM symbol is P1211, and the
twofold rotations 2 of the point group 2 are realized by screw
rotations 21 in this subgroup because (tC 20) is a screw rotation
with its screw axis running parallel to the b axis through the
point 1

4 , 0, 0. There are in fact these two k-subgroups of C121
of index 2 which have the group Ti in common. In the subgroup
table of C121 both are listed under the heading ‘Loss of centring
translations’ because the conventional unit cell is retained while
only the centring translations have disappeared. (Four additional
klassengleiche maximal subgroups of C121 are found under the
heading ‘Enlarged unit cell’.)
The group Ti of type P1 is a non-maximal subgroup of C121 of
index 4.

Definition 1.2.6.2.5. A klassengleiche or k-subgroup H < G
is called isomorphic or an isomorphic subgroup if it belongs
to the same affine space-group type (isomorphism type) as G.
If a subgroup is not isomorphic, it is sometimes called non-
isomorphic. �

Isomorphic subgroups are special k-subgroups. The importance
of the distinction between k-subgroups in general and isomorphic
subgroups in particular stems from the fact that the number of
maximal non-isomorphic k-subgroups of any space group is finite,
whereas the number of maximal isomorphic subgroups is always
infinite, see Section 1.2.8.

Example 1.2.6.2.6.
Consider a space group G of type P1 referred to a conventional
coordinate system. The translation subgroup T (G) consists of
all translations with translation vectors t = ua+ vb+wc, where
u, v and w run through all integer numbers. There is an inver-
sion 10 with the inversion point at the origin and also an infinite
number of other inversions, generated by the combinations of 10

with all translations of T (G).
We consider the subgroup Tg of all translations with an even
coefficient u and arbitrary integers v and w as well as the
coset decomposition (G : Tg). Let t a be the translation with the
translation vector a. There are four cosets: Tg, Tg t a, Tg 10 and
Tg(t a 10). The union Tg ∪ (Tg t a) forms the translationengleiche
maximal subgroup T (G) of index 2. The union Tg ∪ (Tg 10)
forms an isomorphic maximal subgroup of index 2, as does the
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union Tg ∪ (Tg (t a 10)). There are thus two maximal isomorphic
subgroups of index 2 which are obtained by doubling the a lat-
tice parameter. There are altogether 14 isomorphic subgroups of
index 2 for any space group of type P 1 which are obtained by
seven different cell enlargements.

If G belongs to a pair of enantiomorphic space-group types, then
the isomorphic subgroups of G may belong to different crystallo-
graphic space-group types with different HM symbols and differ-
ent space-group numbers. In this case, an infinite number of sub-
groups belong to the crystallographic space-group type of G and
another infinite number belong to the enantiomorphic space-group
type.

Example 1.2.6.2.7.
Space group P41, No. 76, has for any prime number p > 2 an
isomorphic maximal subgroup of index p with the lattice param-
eters a, b, pc. This is an infinite number of subgroups because
there is an infinite number of primes. The subgroups belong to
the space-group type P41 if p ≡ 1 mod 4; they belong to the
type P43 if p ≡ 3 mod 4.

Definition 1.2.6.2.8. A subgroup of a space group is called gen-
eral or a general subgroup if it is neither a translationengleiche
nor a klassengleiche subgroup. It has lost translations as well as
linear parts, i.e. point-group symmetry. �

Example 1.2.6.2.9.
The subgroup Tg in Example 1.2.6.2.6 has lost all inversions
of the original space group P1 as well as all translations with
odd u. It is a general subgroup P1 of the space group P1 of
index 4.

1.2.6.3. The role of normalizers for group–subgroup pairs of space
groups

In Section 1.2.4.5, the normalizer NG(H) of a subgroup H < G
in the group G was defined. The equation H �NG(H) ≤ G holds,
i.e. H is a normal subgroup of NG(H). The normalizer NG(H),
by its index in G, determines the number Nj = |G : NG(H)| of
subgroups H j < G that are conjugate in the group G, cf. Remarks
(2) and (3) below Definition 1.2.4.5.1.

The group–subgroup relations between space groups become
more transparent if one looks at them from a more general point of
view. Space groups are part of the general theory of mappings.
Particular groups are the affine group A of all reversible affine
mappings, the Euclidean group E of all isometries, the transla-
tion group T of all translations and the orthogonal group O of all
orthogonal mappings.

Connected with any particular space group G are its group
of translations T (G) and its point group PG . In addition, the
normalizers NA(G) of G in the affine group A and NE(G) in
the Euclidean group E are useful. They are listed in Section
15.2.1 of IT A. Although consisting of isometries only, NE(G)
is not necessarily a space group, see the paragraph below Lemma
1.2.7.2.6.

For the group–subgroup pairs H < G the following relations
hold:

(1) T (H) ≤ H ≤ NG(H) ≤ G ≤ NE(G) < E ;

(1a) H ≤ NG(H) ≤ NE(H) < E ;

(1b) NE(H) ≤ NA(H) < A;

(2) T (H) ≤ T (G) < T < E ;

(3) T (G) ≤ G ≤ NE(G) ≤ NA(G) < A.

The subgroup H may be a translationengleiche or a klassen-
gleiche or a general subgroup of G. In any case, the normalizer
NG(H) determines the length of the conjugacy class of H < G,
but it is not feasible to list for each group–subgroup pair H < G
its normalizer NG(H). Indeed, it is only necessary to list for any
space group H its normalizer NE(H) in the Euclidean group E
of all isometries, as is done in IT A, Section 15.2.1. From such a
list the normalizers for the group–subgroup pairs can be obtained
easily, because for any chain of space groups H < G < E ,
the relations H ≤ NG(H) ≤ G and H ≤ NG(H) ≤ NE(H)
hold. The normalizer NG(H) consists consequently of all those
isometries of NE(H) that are also elements of G, i.e. that belong
to the intersection NE(H) ∩ G, cf. the examples of Section
1.2.7.10

The isomorphism type of the Euclidean normalizer NE(H)
may depend on the lattice parameters of the space group (spe-
cialized Euclidean normalizer). For example, if the lattice of the
space group P1 of a triclinic crystal is accidentally monoclinic
at a certain temperature and pressure or for a certain compo-
sition in a continuous solid-solution series, then the Euclidean
normalizer of this space group belongs to the space-group types
P2/m or C2/m, otherwise it belongs to P1. Such a special-
ized Euclidean normalizer (here P2/m or C2/m) may be dis-
tinguished from the typical Euclidean normalizer (here P1), for
which the lattice of H is not more symmetric than is required
by the symmetry of H. The specialized Euclidean normaliz-
ers were first listed in the 5th edition of IT A (2002), Section
15.2.1.

1.2.7. Application to domain structures

1.2.7.1. Introductory remarks

In this section, the group-theoretical aspects of domain (twin)
formation (domain structure, transformation twin) from a homoge-
neous single crystal (phase A, parent phase) to a crystalline phase
B (daughter phase, deformed phase) are discussed, where the space
group H of phase B is a subgroup of the space group G of phase A,
H < G. This happens, e.g., in a displacive or order–disorder phase
transition. In most cases phase B, the domain structure, is inho-
mogeneous, consisting of homogeneous regions which are called
domains, defined below.

Only the basic group-theoretical relations are considered here.
A deeper discussion of domain structures and their properties
needs methods using representation theory, thermodynamic points
of view (Landau theory), lattice dynamics and tensor properties of
crystals. Such treatments are beyond the scope of this section. A
detailed discussion of them is given by Tolédano et al. (2003) and
by Janovec & Přı́vratská (2003).

In order to make the group-theoretical treatment possible, the
parent-clamping approximation, abbreviated PCA, is introduced,
by which the lattice parameters of phase A are not allowed to
change at and after the transition to phase B, cf. Janovec &
Přı́vratská (2003). Under the assumption of the PCA, two essential
conditions hold:

10 For maximal subgroups, a calculation of the conjugacy classes is not necessary
because these are indicated in the subgroup tables of Part 2 of this volume by braces
to the left of the data sets for the low-index subgroups and by text for the series of
isomorphic subgroups. For non-maximal subgroups, the conjugacy relations are not
indicated but can be calculated in the way described here. They are also available
online on the Bilbao crystallographic server, http://www.cryst.ehu.es/, under the
program Subgroupgraph.
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