International
Tables for
Crystallography
Volume A1
Symmetry relations between space groups
Edited by Hans Wondratschek and Ulrich Müller

International Tables for Crystallography (2006). Vol. A1. ch. 1.3, pp. 24-26   | 1 | 2 |
https://doi.org/10.1107/97809553602060000539

Chapter 1.3. Remarks on Wyckoff positions

Ulrich Müllera*

a Fachbereich Chemie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail: mueller@chemie.uni-marburg.de

References

First citation Aroyo, M. I. & Perez-Mato, J. M. (1998). Symmetry-mode analysis of displacive phase transitions using International Tables for Crystallography. Acta Cryst. A54, 19–30.Google Scholar
First citation Bärnighausen, H. (1980). Group–subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Comm. Math. Chem. 9, 139–175.Google Scholar
First citation Baur, W. H. (1994). Rutile type derivatives. Z. Kri­stallogr. 209, 143–150.Google Scholar
First citation Baur, W. H. & McLarnan, T. J. (1982). Observed wurtzite derivatives and related tetrahedral structures. J. Solid State Chem. 42, 300–321.Google Scholar
First citation Billiet, Y., Sayari, A. & Zarrouk, H. (1978). L'asso­ciation des familles de Wyckoff dans les changements de repère conventionnel des groupes spatiaux et les passages aux sous-groupes spatiaux. Acta Cryst. A34, 811–819.Google Scholar
First citation Birman, J. L. (1966a). Full group and subgroup methods in crystal physics. Phys. Rev. 150, 771–782.Google Scholar
First citation Birman, J. L. (1966b). Simplified theory of symmetry change in second–order phase transitions: application to V3Si. Phys. Rev. Lett. 17, 1216–1219.Google Scholar
First citation Bock, O. & Müller, U. (2002a). Symmetrieverwandtschaften bei Varianten des Perowskit-Typs. Acta Cryst. B58, 594–606.Google Scholar
First citation Bock, O. & Müller, U. (2002b). Symmetrieverwandtschaften bei Varianten des ReO3-Typs. Z. Anorg. Allg. Chem. 628, 987–992.Google Scholar
First citation Boyle, L. L. & Lawrenson, J. E. (1973). The origin dependence of the Wyckoff site description of a crystal structure. Acta Cryst. A29, 353–357.Google Scholar
First citation Buerger, M. J. (1947). Derivative crystal structures. J. Chem. Phys. 15, 1–16.Google Scholar
First citation Buerger, M. J. (1951). Phase transformations in solids, ch. 6. New York: Wiley.Google Scholar
First citation Chapuis, G. C. (1992). Symmetry relationships between crystal structures and their practical applications. Modern perspectives in inorganic chemistry, edited by E. Parthé, pp. 1–16. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Cracknell, A. P. (1975). Group theory in solid state physics. New York: Taylor and Francis Ltd. and Pergamon.Google Scholar
First citation Fischer, W. & Koch, E. (1983). On the equivalence of point configurations due to Euclidean normalizers (Cheshire groups) of space groups. Acta Cryst. A39, 907–915.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A, Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer. (Abbreviated IT A.)Google Scholar
First citation Izyumov, Y. A. & Syromyatnikov, V. N. (1990). Phase transitions and crystal symmetry. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Koch, E. & Fischer, W. (1975). Automorphismen­grup­pen von Raum­grup­pen und die Zuordnung von Punktlagen zu Kon­fi­gu­ra­tions­lagen. Acta Cryst. A31, 88–95.Google Scholar
First citation Koch, E. & Fischer, W. (1985). Lattice complexes and limiting complexes versus orbit types and non-characteristic orbits: a comparative discussion. Acta Cryst. A41, 421–426.Google Scholar
First citation Koch, E., Fischer, W. & Müller, U. (2005). Normalizers of space groups and their use in crystallography. International tables for crystallography, Vol. A, Space-group symmetry, edited by Th. Hahn, Part 15. Heidelberg: Springer.Google Scholar
First citation Kroumova, E., Perez-Mato, J. M. & Aroyo, M. I. (1998). WYCKSPLIT. Computer program for the determination of the relations of Wyckoff positions for a group–subgroup pair. J. Appl. Cryst. 31, 646. Accessible at: http://www.cryst.ehu.es/cryst/wpsplit.html .Google Scholar
First citation Landau, L. D. & Lifshitz, E. M. (1980). Statistical physics, Part 1, 3rd ed., pp. 459–471. London: Pergamon. (Russian: Stati­sticheskaya Fizika, chast 1. Moskva: Nauka, 1976; German: Lehrbuch der theoretischen Physik, 6. Aufl., Bd. 5, Teil 1, S. 436–447. Berlin: Akademie-Verlag, 1984).Google Scholar
First citation Lawrenson, J. E. (1972). Theoretical studies in crystallography. Dissertation, University of Kent at Canterbury.Google Scholar
First citation McLarnan, T. J. (1981a). Mathematical tools for counting polytypes. Z. Kristallogr. 155, 227–245.Google Scholar
First citation McLarnan, T. J. (1981b). The numbers of polytypes in close packings and related structures. Z. Kristallogr. 155, 269–291.Google Scholar
First citation McLarnan, T. J. (1981c). The combinatorics of cation-deficient close-packed structures. J. Solid State Chem. 26, 235–244.Google Scholar
First citation Megaw, H. D. (1973). Crystal structures: A working approach. Philadelphia: Saunders.Google Scholar
First citation Meyer, A. (1981). Symmmetriebeziehungen zwi­schen Kristallstrukturen des Formeltyps AX2, ABX4 und AB2X6 sowie deren Ordnungs- und Leerstellenvarianten. Dissertation, Universität Karlsruhe.Google Scholar
First citation Müller, U. (1978). Strukturmöglichkeiten für Pentahalogenide mit Doppeloktaeder-Molekülen (MX5)2 bei dichtester Packung der Halogenatome. Acta Cryst. A34, 256–267. Google Scholar
First citation Müller, U. (1980). Strukturverwandtschaften unter den [EPh_4^+]- Salzen. Acta Cryst. B36, 1075–1081.Google Scholar
First citation Müller, U. (1981). MX4-Ketten aus kantenverknüpften Okta­edern: mögliche Kettenkonfigurationen und mögliche Kristallstrukturen. Acta Cryst. B37, 532–545.Google Scholar
First citation Müller, U. (1986). MX5-Ketten aus eckenverknüpften Oktaedern. Mögliche Kettenkonfigurationen und mögliche Kristallstrukturen bei dichtester Packung der X-atome. Acta Cryst. B42, 557–564.Google Scholar
First citation Müller, U. (1992). Berechnung der Anzahl möglicher Strukturtypen für Verbindungen mit dichtest gepackter Anionenteilstruktur. I. Das Rechenverfahren. Acta Cryst. B48, 172–178.Google Scholar
First citation Müller, U. (1993). Inorganic structural chemistry, pp. 233–246. Chichester, New York: Wiley. (German: Anorganische Strukturchemie, 3. Aufl., 1996, S. 296–309. Stuttgart: Teubner.)Google Scholar
First citation Müller, U. (1998). Strukturverwandtschaften zwischen trigonalen Verbindungen mit hexagonal-dichtester Anionenteilstruktur und besetzten Oktaederlücken. Z. Anorg. Allg. Chem. 624, 529–532.Google Scholar
First citation Müller, U. (2002). Kristallpackungen mit linear koordinierten Atomen. Z. Anorg. Allg. Chem. 628, 1269–1278.Google Scholar
First citation Müller, U. (2003). Die Zahl der Substitutions- und Leerstellenvarianten des NaCl-Typs bei verdoppelter Elementarzelle (a, b, 2c). Z. Anorg. Allg. Chem. 629, 487–492.Google Scholar
First citation Pöttgen, R. & Hoffmann, R.-D. (2001). AlB2-related intermetallic compounds – a comprehensive view based on a group–subgroup scheme. Z. Kristallogr. 216, 127–145.Google Scholar
First citation Salje, E. K. H. (1990). Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press.Google Scholar
First citation Stokes, H. T. & Hatch, D. M. (1988). Isotropy subgroups of the 230 crystallographic space groups. Singapore: World Scientific.Google Scholar
First citation Tendeloo, G. van & Amelinckx, S. (1974). Group-theoretical considerations concerning domain formation in ordered alloys. Acta Cryst. A30, 431–440.Google Scholar
First citation Tolédano, J.-C. & Tolédano, P. (1987). The Landau theory of phase transitions. Singapore: World Scientific.Google Scholar
First citation Wondratschek, H. (1976). Extraordinary orbits of space groups. Theoretical considerations. Z. Kristallogr. 143, 460– 470.Google Scholar
First citation Wondratschek, H. (1980). Crystallographic orbits, lattice complexes, and orbit types. MATCH Comm. Math. Chem. 9, 121–125.Google Scholar
First citation Wondratschek, H. (1993). Splitting of Wyckoff positions (orbits). Mineral. Petrol. 48, 87–96.Google Scholar
First citation Wondratschek, H. (2005). Special topics on space groups. International tables for crystallography, Vol. A, Space-group symmetry, edited by Th. Hahn, Part 8. Heidelberg: Springer.Google Scholar
First citation Wondratschek, H. & Jeitschko, W. (1976). Twin domains and antiphase domains. Acta Cryst. A32, 664–666.Google Scholar
First citation Wondratschek, H., Müller, U., Aroyo, M. I. & Sens, I. (1995). Splitting of Wyckoff positions (orbits). II. Group–subgroup chains of index 6. Z. Kristallogr. 210, 567–573.Google Scholar