International
Tables for
Crystallography
Volume A1
Symmetry relations between space groups
Edited by Hans Wondratschek and Ulrich Müller

International Tables for Crystallography (2006). Vol. A1. ch. 1.5, p. 34   | 1 | 2 |

Section 1.5.3.5. Isomorphism theorems

Gabriele Nebea*

a Abteilung Reine Mathematik, Universität Ulm, D-89069 Ulm, Germany
Correspondence e-mail: nebe@mathematik.uni-ulm.de

1.5.3.5. Isomorphism theorems

| top | pdf |

[cf. Ledermann (1976[link]), pp. 68–73.]

Remark . If [\varphi] is a homomorphism [{\cal G} \rightarrow {\cal H}] and [{{\cal N}}] [{\underline{\triangleleft}}] [{{\cal H}}] is a normal subgroup of [{\cal H}], then the pre-image [\varphi ^{-1} ({{\cal N}}): =] [\{ {\sf g}\in {{\cal G}} \mid] [\varphi({\sf g}) \in {{\cal N}} \}] is a normal subgroup of [{\cal G}]. In particular, it holds that [\ker (\varphi)\,\, {\underline{\triangleleft}}\,\,{{\cal G}}].

Hence the factor group [{{\cal G}} / \ker(\varphi)] is a well defined group. The following theorem says that this group is isomorphic to the image [\varphi({{\cal G}}) \leq {{\cal H}}] of [\varphi ]:

Theorem 1.5.3.5.1. (First isomorphism theorem.)  Let [\varphi: {{\cal G}}\rightarrow {{\cal H}}] be a homomorphism of groups. Then [\overline{\varphi }: {{\cal G}}/\ker(\varphi) \rightarrow \varphi({{\cal G}}) \leq {{\cal H}}.][{\sf g} \ker(\varphi) \mapsto\varphi({\sf g}) ] is an isomorphism between the factor group [{{\cal G}}/\ker(\varphi)] and the image group of [\varphi], which is a subgroup of [{\cal H}].

Theorem 1.5.3.5.2. (Third isomorphism theorem.)  Let [{{\cal N}}\, {\underline{\triangleleft}}\,\,{{\cal G}}] be a normal subgroup of the group [{\cal G}] and [{\cal U}\leq {\cal G}] be an arbitrary subgroup of [{\cal G}]. Then [{{\cal U}}\cap {{\cal N}} \,{\underline{\triangleleft}}\,\,{{\cal U}}] is a normal subgroup of [{\cal U}] and [{{\cal U}}/({{\cal U}}\cap {{\cal N}}) \cong {{\cal N}}{{\cal U}} / {{\cal N}}.] (For the definition of the group [{\cal N}][{\cal U}] see Proposition 1.5.3.2.11[link].)

Definition 1.5.3.5.3.  A subgroup [{{\cal U}}\leq {{\cal H}}] is a characteristic subgroup [{{\cal U}} \, {\rm char} \, {{\cal H}}] if [\varphi ({{\cal U}}) = {{\cal U}}] for all automorphisms [\varphi ] of [{{\cal H}}].

Remarks

  • (a) If [{\cal H}] is a finite Abelian group and [{\cal P}] is a Sylow p-subgroup of [{\cal H}], then [{{\cal P}} \, {\rm char} \, {{\cal H}}], because [{\cal P}] is the only subgroup of [{\cal H}] of order [|{\cal P}|].

  • (b) If [{\cal H}] is any group and [{{\cal U}}\, {\rm char} \, {{\cal H}}], then [{{\cal U}}\, {\underline{\triangleleft}}\, {\cal H}] is also a normal subgroup of [{\cal H}]: for [{\sf h}\in {\cal H}] define the mapping [\kappa _{{\sf h}}: {\cal H}\rightarrow {\cal H}, {\sf x}\mapsto] [{\sf h} {\sf x} {\sf h}^{-1}]. Then [\kappa _{\sf h}] is an automorphism of [{\cal H}] and [\kappa_{{\sf h}}({{\cal U}}) ={\sf h}\kern2pt {{\cal U}} {\sf h}^{-1} =] [ {{\cal U}}] since [{\cal U}] is characteristic in [ {\cal H}].

  • (c) If [{{\cal U}}\, {\rm char} \, {{\cal N}} \, {\underline{\triangleleft}} \, {{\cal H}}], then [{{\cal U}} \, {\underline{\triangleleft}}\, {{\cal H}}], since the conjugation with any element of [{\cal H}] induces an automorphism of [{\cal N}].

References

First citation Ledermann, W. (1976). Introduction to group theory. London: Longman. (German: Einführung in die Gruppentheorie, Braunschweig: Vieweg, 1977.)Google Scholar








































to end of page
to top of page