International
Tables for
Crystallography
Volume A1
Symmetry relations between space groups
Edited by Hans Wondratschek and Ulrich Müller

International Tables for Crystallography (2006). Vol. A1. ch. 1.5, pp. 34-35   | 1 | 2 |

Section 1.5.4.1. Definition of space groups

Gabriele Nebea*

a Abteilung Reine Mathematik, Universität Ulm, D-89069 Ulm, Germany
Correspondence e-mail: nebe@mathematik.uni-ulm.de

1.5.4.1. Definition of space groups

| top | pdf |

In IT A (2005[link]), Section 8.1.6[link] , space groups are introduced as symmetry groups of crystal patterns.

Definition 1.5.4.1.1

  • (a) Let [{\bf V}_n] be the n-dimensional real vector space. A subset [{\bf L} \subseteq {\bf V}_n] is called an (n-dimensional) lattice if there is a basis [({\bf b}_1,\ldots, {\bf b}_n)] of [{\bf V}_n] such that[{\bf L}={\bb Z} {\bf b}_1 + \ldots + {\bb Z} {\bf b}_n = \{ \textstyle\sum\limits _{i=1}^n a_i {\bf b}_i \mid a_i \in {\bb Z} \}. ]

  • (b) A crystal structure is a mapping [f: {\bb E} _{n} \rightarrow {\bb R} ] of the Euclidean affine n-space into the real numbers such that [{\rm Stab}_{\tau ({\bb A} _{n}) } (f): = \{ t \in \tau({\bb A}_{n}) \mid f(P+t) = f(P) \,{\rm for \, all \,} P\in {\bb A}_{n} \}] is an n-dimensional lattice in [\tau ({\bb A}_{n})].

  • (c) The Euclidean group [{\cal E}_{n}] acts on the set of mappings [{\bb E}_{n} \rightarrow {\bb R}] via [({\sf g} \cdot f)(P): = f ({\sf g} ^{-1}P) ] for all [P\in {\bb E}_{n}] and for all [{\sf g} \in {\cal E}_{n}] and [f:{\bb E}_{n} \rightarrow {\bb R}]. A space group [{\cal R}] is the stabilizer of a crystal structure [f:{\bb E}_{n} \rightarrow {\bb R}]; [{\cal R} = {\rm Stab}_{\cal E}_{n}(f)].

  • (d) Let [{\cal R} \leq {\cal E}_{n} ] be a space group. The translation subgroup [{\cal T}({\cal R})] of [{\cal R}] is defined as [{\cal T}({\cal R}): ={\cal R}\cap {\cal T}_{n}.]

The definition introduced space groups in the way they occur in crystallography: The group of symmetries of an ideal crystal stabilizes the crystal structure. This definition is not very helpful in analysing the structure of space groups. If [{\cal R}] is a space group, then the translation subgroup [{\cal T}: = {\cal T}({\cal R})] is a normal subgroup of [{\cal R}]. It is even a characteristic subgroup of [{\cal R}], hence fixed under every automorphism of [{\cal R}]. By Definition 1.5.4.1.1[link], its image under the inverse [\mu '] of the mapping [\mu ] in Example 1.5.3.4.4[link] defined by [\mu': {{\cal T}} \rightarrow \tau ({\bb{E}}_{n}); \left(\matrix{ {\bi I}\,\vphantom{(^2{\big(_2}}&\vrule\, &{\bi v} \cr \noalign{\vskip-1pt\hrule} \cr{\bi o}^{\rm T}\,\vphantom{{\big(^2}(_2}&\vrule\, &1 } \right) \mapsto \bi{v}]in [\tau ({\bb A}_{n})] is a full lattice [{\bf L}({\cal R})]. Since [\mu '] is an isomorphism from [{\cal T} ] onto [{\bf L}({\cal R})], the translation subgroup of [{\cal R}] is isomorphic to the lattice [{\bf L}({\cal R})]. In particular, one has [\mu ' (t_1 t_2) = \mu ' (t_1) + \mu ' (t_2)] and the subgroup [{\cal T}^{p}], formed by the pth powers of elements in [{\cal T}], is mapped onto [p{\bf L}({\cal R})]. Lattices are well understood. Although they are infinite, they have a simple structure, so they can be examined algorithmically. Since they lie in a vector space, one can apply linear algebra to them.

Now we want to look at how this lattice [{\cal T}({\cal R})] fits into the space group [{\cal R}]. The affine group [{\cal A}_{n}] acts on [{\cal T}_{n}] by conjugation as well as on [\tau({\bb A}_{n})] via its linear part. Similarly the space group [{\cal R}] acts on [{\cal T}({\cal R})] by conjugation: For [{\sf g} \!\in \!{\cal R}] and [{\sf t} \!\in \!{\cal T}], one gets [\mu' ({\sf g} {\sf t} {\sf g} ^{-1}) = \overline{{\sf g} } \mu ' ({\sf t}) ], where [\overline{{\sf g} }] is the linear part of [{\sf g}]. Therefore the kernel of this action is on the one hand the centralizer of [{\cal T}({\cal R})] in [{\cal R}], on the other hand, since [{\bf L}({\cal R})] contains a basis of [\tau ({\bb E}_{n})], it is equal to the kernel of the mapping [\overline{} ], which is [{\cal R} \cap {\cal T}_n = {\cal T}({\cal R})], hence [{\cal C}_{\cal R}({\cal T}({\cal R})) = {\cal T}({\cal R}).]Hence only the linear part [\overline{{\cal R}} \cong {\cal R}/{\cal T}({\cal R}) ] of [{\cal R}] acts faithfully on [{\cal T}({\cal R})] by conjugation and linearly on [{\bf L}(\cal {R})]. This factor group [{\cal R} /{\cal T}({\cal R})] is a finite group. Let us summarize this:

Theorem 1.5.4.1.2.  Let [{\cal R}] be a space group. The translation subgroup [{\cal T}({\cal R})\! = \!{\cal R} \cap {\cal T}_{n} ] is an Abelian normal subgroup of [{\cal R}] which is its own centralizer, [{\cal C}_{\cal R}({\cal T}({\cal R})) = {\cal T}({\cal R})]. The finite group [{\cal R}/{\cal T}({\cal R}) ] acts faithfully on [{\cal T}({\cal R})] by conjugation. This action is similar to the action of the linear part [\overline{{\cal R}}] on the lattice [\mu ' ({\cal T} ({\cal R})) = {\bf L}({\cal R})].

References

First citation International Tables for Crystallography (2005). Vol. A, Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer. (Abbreviated IT A.)Google Scholar








































to end of page
to top of page