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(4) Tetragonal space groups:

(i) c′ = 3c.

(5) Trigonal space groups:

(a) Trigonal space groups with hexagonal P lattice:

(i) c′ = 3c,
(ii) a′ = 3a, b′ = 3b, H-centring,

(iii) a′ = a − b, b′ = a + 2b, c′ = 3c, R lattice,
(iv) a′ = 2a + b, b′ = −a + b, c′ = 3c, R lattice,
(v) a′ = 2a, b′ = 2b.

(b) Trigonal space groups with rhombohedral R lattice and
hexagonal axes:

(i) a′ = −2b, b′ = 2a + 2b.

(c) Trigonal space groups with rhombohedral R lattice and
rhombohedral axes:

(i) a′ = a − b, b′ = b − c, c′ = a + b + c,
(ii) a′ = a − b + c, b′ = a + b − c, c′ = −a + b + c.

(6) Hexagonal space groups:

(i) c′ = 3c,
(ii) a′ = 3a, b′ = 3b, H-centring,

(iii) a′ = 2a, b′ = 2b.

(7) Cubic space groups with P lattice:

(i) a′ = 2a, b′ = 2b, c′ = 2c, I lattice.

2.1.5. Series of maximal isomorphic subgroups

BY Y. BILLIET

2.1.5.1. General description

Maximal subgroups of index higher than 4 have index p, p2 or
p3, where p is prime, are necessarily isomorphic subgroups and
are infinite in number. Only a few of them are listed in IT A in
the block ‘Maximal isomorphic subgroups of lowest index IIc’.
Because of their infinite number, they cannot be listed individu-
ally, but are listed in this volume as members of series under the
heading ‘Series of maximal isomorphic subgroups’. In most of the
series, the HM symbol for each isomorphic subgroup H < G will
be the same as that of G. However, if G is an enantiomorphic space
group, the HM symbol of H will be either that of G or that of its
enantiomorphic partner.

Example 2.1.5.1.1.
Two of the four series of isomorphic subgroups of the space
group P41, No. 76, are (the data on the generators are omitted):

[p] c′ = pc
P43 (78) p > 2; p ≡ 3 (mod 4) a, b, pc

no conjugate subgroups
P41 (76) p > 4; p ≡ 1 (mod 4) a, b, pc

no conjugate subgroups

On the other hand, the corresponding data for P43, No. 78, are

[p] c′ = pc
P43 (78) p > 4; p ≡ 1 (mod 4) a, b, pc

no conjugate subgroups
P41 (76) p > 2; p ≡ 3 (mod 4) a, b, pc

no conjugate subgroups

Note that in both tables the subgroups of the type P43, No. 78,
are listed first because of the rules on the sequence of the sub-
groups.

If an isomorphic maximal subgroup of index i ≤ 4 is a member
of a series, then it is listed twice: as a member of its series and
individually under the heading ‘Enlarged unit cell’.

Most isomorphic subgroups of index 3 are the first members of
series but those of index 2 or 4 are rarely so. An example is the
space group P42, No. 77, with isomorphic subgroups of index 2
(not in any series) and 3 (in a series); an exception is found in space
group P4, No. 75, where the isomorphic subgroup for c′ = 2c is
the first member of the series [p] c′ = pc.

2.1.5.2. Basis transformation

The conventional basis of the unit cell of each isomorphic sub-
group in the series has to be defined relative to the basis of the
original space group. For this definition the prime p is frequently
sufficient as a parameter.

Example 2.1.5.2.1.
The isomorphic subgroups of the space group P4222, No. 93,
can be described by two series with the bases of their members:

[p] a, b, pc
[p2] pa, pb, c.

In other cases, one or two positive integers, here called q and r,
define the series and often the value of the prime p.

Example 2.1.5.2.2.
In space group P6, No. 174, the series qa− rb, ra+(q+ r)b, c
is listed. The values of q and r have to be chosen such that while
q > 0, r > 0, p = q2 + r2 + qr and p is prime.

Example 2.1.5.2.3.
In the space group P1121/m, No. 11, unique axis c, the series
pa, −qa + b, c is listed. Here p and q are independent and q
may take the p values 0 ≤ q < p for each value of p.

2.1.5.3. Origin shift

Each of the sublattices discussed in Section 2.1.4.3.2 is com-
mon to a conjugacy class or belongs to a normal subgroup of a
given series. The subgroups in a conjugacy class differ by the posi-
tions of their conventional origins relative to the origin of the space
group G. To define the origin of the conventional unit cell of each
subgroup in a conjugacy class, one, two or three integers, called
u, v or w in these tables, are necessary. For a series of subgroups
of index p, p2 or p3 there are p, p2 or p3 conjugate subgroups,
respectively. The positions of their origins are defined by the p or
p2 or p3 permitted values of u or u, v or u, v, w, respectively.

Example 2.1.5.3.1.
The space group G, P42c, No. 112, has two series of maximal
isomorphic subgroups H. For one of them the lattice relations
are [p2] a′ = pa, b′ = pb, listed as pa, pb, c for the transfor-
mation matrix. The index is p2. For each value of p there exist
exactly p2 conjugate subgroups with origins in the points u, v, 0,
where the parameters u and v run independently: 0 ≤ u < p and
0 ≤ v < p.

In another type of series there is exactly one (normal) subgroup
H for each index p; the location of its origin is always chosen at
the origin 0, 0, 0 of G and is thus not indicated as an origin shift.

Example 2.1.5.3.2.
Consider the space group Pca21, No. 29. Only one subgroup
exists for each value of p in the series a, b, pc. This is indicated
in the tables by the statement ‘no conjugate subgroups’.
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2.1.5.4. Generators

The generators of the p (or p2 or p3) conjugate isomorphic sub-
groups H are obtained from those of G by adding translational
components. These components are determined by the parameters
p (or q and r, if relevant) and u (and v and w, if relevant).

Example 2.1.5.4.1.
Space group P213, No. 198.
In the series defined by the lattice relations pa, pb, pc and the
origin shift u, v, w there exist exactly p3 conjugate subgroups
for each value of p. The generators of each subgroup are defined
by the parameter p and the triplet u, v, w in combination with
the generators (2), (3) and (5) of G. Consider the subgroup
characterized by the basis 7a, 7b, 7c and by the origin shift
u = 3, v = 4, w = 6. One obtains from the generator (2)
x + 1

2 , y, z + 1
2 of G the corresponding generator of H by adding

the translation vector ( p
2 − 1

2 + 2u)a + 2vb + ( p
2 − 1

2)c to
the translation vector 1

2 a + 1
2 c of the generator (2) of G and

obtains 19
2 a + 8b + 7

2 c, so that this generator of H is written
x + 19

2 , y + 8, z + 7
2 .

2.1.5.5. Special series

For most space groups, there is only one description of their
series of the isomorphic subgroups. However, if a space group
is described twice in IT A, then there are also two different
descriptions of these series. This happens for monoclinic space
groups with the settings unique axis b and unique axis c, for
some orthorhombic, tetragonal and cubic space groups with ori-
gin choice 1 and origin choice 2 and for trigonal space groups
with rhombohedral lattices with hexagonal axes and rhombohedral
axes.

2.1.5.5.1. Monoclinic space groups

In the monoclinic space groups, the series in the listings ‘unique
axis b’ and ‘unique axis c’ are closely related by a simple cyclic
permutation of the axes a, b and c, see IT A, Section 2.2.16.

2.1.5.5.2. Trigonal space groups with rhombohedral lattice

In trigonal space groups with rhombohedral lattices, the series
with hexagonal axes and with rhombohedral axes appear to be
rather different. However, the ‘rhombohedral’ series are the exact
transcript of the ‘hexagonal’ series by the same transformation for-
mulae as are used for the different monoclinic settings. However,
the transformation matrices P and P−1 in Part 5 of IT A are more
complicated in this case.

Example 2.1.5.5.1.
Space group R3, No. 148. The second series is described with
hexagonal axes by the basis transformation a, b, pc, i.e. a′

hex =
ahex, b′

hex = bhex, c′hex = p chex, and the origin shift 0, 0, u. We
discuss the basis transformation first. It can be written

(a′
hex)T = (ahex)TX (2.1.5.1)

in analogy to Part 5, IT A. Here (ahex)T is the row of basis vec-
tors of the conventional hexagonal basis. The matrix X is defined
by

X =

⎛
⎝

1 0 0
0 1 0
0 0 p

⎞
⎠ .

With rhombohedral axes, equation (2.1.5.1) would be written

(a′
rh)

T = (arh)TY, (2.1.5.2)

with the matrix Y to be determined.
The transformation from hexagonal to rhombohedral axes is
described by

(arh)T = (ahex)TP−1, (2.1.5.3)

where the matrices

P−1 =

⎛
⎜⎝

2
3 − 1

3 − 1
3

1
3

1
3 − 2

3
1
3

1
3

1
3

⎞
⎟⎠ and P =

⎛
⎜⎝

1 0 1

1 1 1

0 1 1

⎞
⎟⎠

are listed in IT A, Table 5.1.3.1, see also Figs. 5.1.3.6 (a) and
(c) in IT A.
Applying equations (2.1.5.3), (2.1.5.1) and (2.1.5.2), one gets

(a′
rh)T = (a′

hex)TP−1 = (ahex)TXP−1 = (arh)TY = (ahex)TP−1Y.
(2.1.5.4)

From equation (2.1.5.4) it follows that

XP−1 = P−1Y or Y = PXP−1. (2.1.5.5)

One obtains Y from equation (2.1.5.5) by matrix multiplication,

Y =

⎛
⎜⎜⎝

p+2
3

p−1
3

p−1
3

p−1
3

p+2
3

p−1
3

p−1
3

p−1
3

p+2
3

⎞
⎟⎟⎠ ,

and from Y for the bases of the subgroups with rhombohedral
axes

a′
rh = 1

3 [(p + 2)arh + (p − 1)brh + (p − 1)crh],

b′
rh = 1

3 [(p − 1)arh + (p + 2)brh + (p − 1)crh],

c′rh = 1
3 [(p − 1)arh + (p − 1)brh + (p + 2)crh].

The column of the origin shift uhex = 0, 0, u in hexagonal axes
must be transformed by urh = P uhex. The result is the column
urh = u, u, u in rhombohedral axes.

2.1.5.5.3. Space groups with two origin choices

Space groups with two origin choices are always described in
the same basis, but origin 1 is shifted relative to origin 2 by the
shift vector s. For most space groups with two origins, the appear-
ance of the two series related by the origin shift is similar; there
are only differences in the generators.

Example 2.1.5.5.2.
Consider the space group Pnnn, No. 48, in both origin choices
and the corresponding series defined by pa, b, c and u, 0, 0. In
origin choice 1, the generator (5) of G is described by the ‘coor-
dinates’ x + 1

2 , y + 1
2 , z + 1

2 . The translation part ( p
2 − 1

2 )a of
the third generator of H stems from the term 1

2 in the first ‘coor-
dinate’ of the generator (5) of G. Because ( p

2 − 1
2 )a must be a

translation vector of G, p is odd. Such a translation part is not
found in the generators (2) and (3) of H because the term 1

2 does
not appear in the ‘coordinates’ of the corresponding generators
of G.
The situation is inverted in the description for origin choice 2.
The translation term ( p

2 − 1
2)a appears in the first and second

generator of H and not in the third one because the term 1
2
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occurs in the first ‘coordinate’ of the generators (2) and (3) of G
but not in the generator (5).
The term 2u appears in both descriptions. It is introduced in
order to adapt the generators to the origin shift u, 0, 0.

In other space groups described in two origin choices, surpris-
ingly, the number of series is different for origin choice 1 and ori-
gin choice 2.

Example 2.1.5.5.3.
In the tetragonal space group I41/amd, No. 141, for origin
choice 1 there is one series of maximal isomorphic subgroups
of index p2, p prime, with the bases pa, pb, c and origin shifts
u, v, 0. For origin choice 2, there are two series with the same
bases pa, pb, c but with the different origin shifts u, v, 0 and
1
2 + u, v, 0. What are the reasons for these results?
For origin choice 1, the term 1

2 appears in the first and sec-
ond ‘coordinates’ of all generators (2), (3), (5) and (9) of G.
This term 1

2 is the cause of the translation vectors ( p
2 − 1

2 )a and
( p

2 − 1
2 )b in the generators of H.

For origin choice 2, fractions 1
4 and 3

4 appear in all ‘coordinates’
of the generator (3) y + 1

4 , x + 3
4 , z + 1

4 of G. As a consequence,
translational parts with vectors ( p

4 + 1
4)a and ( 3p

4 − 5
4)b appear

if p ≡ 3 (mod 4). On the other hand, translational parts with
vectors ( p

4 − 1
4 )a, ( 3p

4 − 3
4)b are introduced in the generators of

H if p ≡ 1 (mod 4) holds.
Another consequence of the fractions 1

4 and 3
4 occurring in the

generator (3) of G is the difference in the origin shifts. They are
1
2 + u, v, 0 for p ≡ 3 (mod 4) and u, v, 0 for p ≡ 1 (mod 4).
Thus, the one series in origin choice 1 for odd p is split into two
series in origin choice 2 for p ≡ 3 (mod 4) and p ≡ 1 (mod 4).3

2.1.6. Minimal supergroups

2.1.6.1. General description

In the previous sections, the relation H < G was seen from the
viewpoint of the group G. In this case, H was a subgroup of G.
However, the same relation may be viewed from the group H. In
this case, G > H is a supergroup of H. As for the subgroups of
G, cf. Section 1.2.6, different kinds of supergroups of H may be
distinguished. The following definitions are obvious.

Definition 2.1.6.1.1. Let H < G be a maximal subgroup of G.
Then G > H is called a minimal supergroup of H. If H is a
translationengleiche subgroup of G then G is a translationenglei-
che supergroup (t-supergroup) of H. If H is a klassengleiche sub-
group of G, then G is a klassengleiche supergroup (k-supergroup)
of H. If H is an isomorphic subgroup of G, then G is an isomor-
phic supergroup of H. If H is a general subgroup of G, then G is
a general supergroup of H. �

The search for supergroups of space groups is much more dif-
ficult than the search for subgroups. One of the reasons for this
difficulty is that the search for subgroups H < G is restricted
to the elements of the space group G itself, whereas the search
for supergroups G > H has to take into account the whole (con-
tinuous) group E of all isometries. For example, there are only a
finite number of subgroups H of any space group G for any given

3 F. Gähler (private communication) has shown that such a splitting can be avoided
if one allows the prime p to enter the formulae for the origin shifts. In these tables
we have not made use of this possibility in order to keep the origin shifts in the
same form for all space groups G.

index i. On the other hand, there may not only be an infinite num-
ber of supergroups G of a space group H for a finite index i but
even an uncountably infinite number of supergroups of H.

Example 2.1.6.1.2.
Let H = P1. Then there is an infinite number of t-supergroups
P1 of index 2 because there is no restriction for the sites of the
centres of inversion and thus of the conventional origin of P1.

In the tables of this volume, a supergroup G of a space group
H is listed by its type if H is listed as a subgroup of G. The entry
contains at least the index of H in G, the conventional HM symbol
of G and its space-group number. Additional data may be given for
klassengleiche supergroups. More details, e.g. the representatives
of the general position or the generators as well as the transforma-
tion matrix and the origin shift, would only duplicate the subgroup
data. The number of supergroups belonging to one entry can nei-
ther be concluded from the subgroup data nor is it listed among the
supergroup data.

Like the subgroup data, the supergroup data are also partitioned
into blocks.

2.1.6.2. I Minimal translationengleiche supergroups

For each space group H, under this heading are listed those
space-group types G for which H appears as an entry under the
heading I Maximal translationengleiche subgroups. The listing
consists of the index in brackets [. . . ], the conventional HM sym-
bol and (in parentheses) the space-group number (. . . ). The space
groups are ordered by ascending space-group number. If this line
is empty, the heading is printed nevertheless and the content is
announced by ‘none’, as in P6/mmm, No. 191.

The supergroups listed on the line I Minimal translationen-
gleiche supergroups are realized only if the lattice conditions of
H fulfil the lattice conditions for G. For example, if G = P422,
No. 89, is a supergroup of H = P222, No. 16, two of the three
independent lattice parameters a, b, c of P222 must be equal (or in
crystallographic practice, approximately equal). These must be a
and b if c is the tetragonal axis, b and c if a is the tetragonal axis
or c and a if b is the tetragonal axis. In the latter two cases, the
setting of P222 has to be adapted to the conventional c-axis setting
of P422. For the cubic supergroup P23, No. 195, all three lattice
parameters of P222 must be (approximately) equal. Such condi-
tions are always to be taken into consideration if the t-supergroup
belongs to a different crystal family4 to the original group. There-
fore, for H = P222 there is no lattice condition for the supergroup
G = Pmmm because P222 and Pmmm belong to the same crystal
family.

2.1.6.3. II Minimal non-isomorphic klassengleiche supergroups

Klassengleiche supergroups G > H always belong to the crys-
tal family of H. Therefore, there are no restrictions for the lattice
parameters of H.

The block II Minimal non-isomorphic klassengleiche super-
groups is divided into two subblocks with the headings Addi-
tional centring translations and Decreased unit cell. If both sub-
blocks are empty, only the heading of the block is listed, stating
‘none’ for the content of the block, as in P6/mmm, No. 191.

If at least one of the subblocks is non-empty, then the head-
ing of the block and the headings of both subblocks are listed. An

4 For the term ‘crystal family’ cf. Section 1.2.5.2, or, for more details, IT A, Sec-
tion 8.2.7.
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