p2 No. 2 p2

Generators selected (1); t(1, 0); t(0, 1); (2)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
2 e 1
(1) xy(2) -x-y 

I Maximal translationengleiche subgroups


[2] p1 (1)1

II Maximal klassengleiche subgroups

[2] a' = 2a


p2 (2)<2>2a, b
p2 (2)<2 + (1, 0)>2a, b1/2, 0

[2] b' = 2b


p2 (2)<2>a, 2b
p2 (2)<2 + (0, 1)>a, 2b0, 1/2

[2] a' = 2a, b' = 2b


c2 (2, p2)<2>2a, -a + b
c2 (2, p2)<2 + (1, 0)>2a, -a + b1/2, 0

[3] a' = 3a


bracep2 (2)<2>3a, b
p2 (2)<2 + (2, 0)>3a, b1, 0
p2 (2)<2 + (4, 0)>3a, b2, 0

[3] a' = 3a, b' = -a + b


bracep2 (2)<2>3a, -a + b
p2 (2)<2 + (2, 0)>3a, -a + b1, 0
p2 (2)<2 + (4, 0)>3a, -a + b2, 0

[3] a' = 3a, b' = -2a + b


bracep2 (2)<2>3a, -2a + b
p2 (2)<2 + (2, 0)>3a, -2a + b1, 0
p2 (2)<2 + (4, 0)>3a, -2a + b2, 0

[3] b' = 3b


bracep2 (2)<2>a, 3b
p2 (2)<2 + (0, 2)>a, 3b0, 1
p2 (2)<2 + (0, 4)>a, 3b0, 2

[p] a' = pa, b' = -qa + b


p2 (2)<2 + (2u, 0)>pa, -qa + bu, 0
 p > 2; 0 ≤ q < p; 0 ≤ u < p
p conjugate subgroups for each pair of q and prime p

[p] b' = pb


p2 (2)<2 + (0, 2u)>a, pb0, u
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

I Minimal translationengleiche supergroups


[2] p2mm (6); [2] p2mg (7); [2] p2gg (8); [2] c2mm (9); [2] p4 (10); [2] p6 (16)

II Minimal non-isomorphic klassengleiche supergroups


none

none








































to end of page
to top of page