p2mm No. 6 p2mm

Generators selected (1); t(1, 0); t(0, 1); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
4 i 1
(1) xy(2) -x-y(3) -xy(4) x-y

I Maximal translationengleiche subgroups


[2] p1m1 (3pm)1; 3
[2] p11m (3pm)1; 4 b, -a
[2] p211 (2p2)1; 2

II Maximal klassengleiche subgroups

[2] a' = 2a


p2mg (7)<2; 3 + (1, 0)>2a, b
p2mg (7)<3; 2 + (1, 0)>2a, b1/2, 0
p2mm (6)<2; 3>2a, b
p2mm (6)<(2; 3) + (1, 0)>2a, b1/2, 0

[2] b' = 2b


p2gm (7, p2mg)<2; 3 + (0, 1)>2b, -a
p2gm (7, p2mg)<(2; 3) + (0, 1)>2b, -a0, 1/2
p2mm (6)<2; 3>a, 2b
p2mm (6)<3; 2 + (0, 1)>a, 2b0, 1/2

[2] a' = 2a, b' = 2b


c2mm (9)<2; 3>2a, 2b
c2mm (9)<3; 2 + (0, 1)>2a, 2b0, 1/2
c2mm (9)<(2; 3) + (1, 0)>2a, 2b1/2, 0
c2mm (9)<2 + (1, 1); 3 + (1, 0)>2a, 2b1/21/2

[3] a' = 3a


bracep2mm (6)<2; 3>3a, b
p2mm (6)<(2; 3) + (2, 0)>3a, b1, 0
p2mm (6)<(2; 3) + (4, 0)>3a, b2, 0

[3] b' = 3b


bracep2mm (6)<2; 3>a, 3b
p2mm (6)<3; 2 + (0, 2)>a, 3b0, 1
p2mm (6)<3; 2 + (0, 4)>a, 3b0, 2

[p] a' = pa


p2mm (6)<(2; 3) + (2u, 0)>pa, bu, 0
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p] b' = pb


p2mm (6)<3; 2 + (0, 2u)>a, pb0, u
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

I Minimal translationengleiche supergroups


[2] p4mm (11)

II Minimal non-isomorphic klassengleiche supergroups


[2] c2mm (9)

none








































to end of page
to top of page