Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| |
I Maximal translationengleiche subgroups
II Maximal klassengleiche subgroups
[2] a' = 2a
[2] b' = 2b
[2] c' = 2c
[2] b' = 2b, c' = 2c
A1 (1, P1) | <1> | a, 2b, b + c | |
[2] a' = 2a, c' = 2c
B1 (1, P1) | <1> | 2a, b, a + c | |
[2] a' = 2a, b' = 2b
C1 (1, P1) | <1> | 2a, a + b, c | |
[2] a' = 2a, b' = 2b, c' = 2c
F1 (1, P1) | <1> | 2a, a + b, a + c | |
[3] a' = 3a
[3] a' = 3a, b' = a + b
[3] a' = 3a, b' = 2a + b
[3] a' = 3a, c' = a + c
[3] a' = 3a, c' = 2a + c
[3] a' = 3a, b' = a + b, c' = a + c
P1 (1) | <1> | 3a, a + b, a + c | |
[3] a' = 3a, b' = 2a + b, c' = a + c
P1 (1) | <1> | 3a, 2a + b, a + c | |
[3] a' = 3a, b' = a + b, c' = 2a + c
P1 (1) | <1> | 3a, a + b, 2a + c | |
[3] a' = 3a, b' = 2a + b, c' = 2a + c
P1 (1) | <1> | 3a, 2a + b, 2a + c | |
[3] b' = 3b
[3] b' = 3b, c' = b + c
[3] b' = 3b, c' = 2b + c
[3] c' = 3c
- Series of maximal isomorphic subgroups
[p] a' = pa, b' = qa + b, c' = ra + c
P1 (1) | <1> | pa, qa + b, ra + c | | | p > 1; 0 ≤ q < p; 0 ≤ r < p no conjugate subgroups |
|
[p] b' = pb, c' = qb + c
P1 (1) | <1> | a, pb, qb + c | | | p > 1; 0 ≤ q < p no conjugate subgroups |
|
[p] c' = pc
P1 (1) | <1> | a, b, pc | | | p > 1 no conjugate subgroups |
|
I Minimal translationengleiche supergroups
[2] P-1 (2); [2] P121 (3); [2] P112 (3); [2] P1211 (4); [2] P1121 (4); [2] C121 (5); [2] A112 (5); [2] P1m1 (6); [2] P11m (6); [2] P1c1 (7); [2] P11a (7); [2] C1m1 (8); [2] A11m (8); [2] C1c1 (9); [2] A11a (9); [3] P3 (143); [3] P31 (144); [3] P32 (145); [3] R3 (146) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations