UNIQUE AXIS b, CELL CHOICE 1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) x, -y, z + 1/2 | |
|
I Maximal translationengleiche subgroups
II Maximal klassengleiche subgroups
[2] b' = 2b
P1c1 (7) | <2> | a, 2b, c | |
P1c1 (7) | <2 + (0, 1, 0)> | a, 2b, c | 0, 1/2, 0 |
[2] a' = 2a
P1c1 (7) | <2> | 2a, b, c | |
P1n1 (7, P1c1) | <2 + (1, 0, 0)> | 2a, b, -2a + c | |
[2] a' = 2a, b' = 2b
C1c1 (9) | <2> | 2a, 2b, c | |
C1c1 (9) | <2 + (0, 1, 0)> | 2a, 2b, c | 0, 1/2, 0 |
[3] b' = 3b
| P1c1 (7) | <2> | a, 3b, c | | P1c1 (7) | <2 + (0, 2, 0)> | a, 3b, c | 0, 1, 0 | P1c1 (7) | <2 + (0, 4, 0)> | a, 3b, c | 0, 2, 0 |
|
[3] c' = 3c
P1c1 (7) | <2 + (0, 0, 1)> | a, b, 3c | |
[3] a' = 3a
[3] a' = 3a, c' = -2a + c
P1c1 (7) | <2 + (-1, 0, 0)> | 3a, b, -2a + c | |
[3] a' = 3a, c' = -4a + c
P1c1 (7) | <2 + (-2, 0, 0)> | 3a, b, -4a + c | |
- Series of maximal isomorphic subgroups
[p] b' = pb
P1c1 (7) | <2 + (0, 2u, 0)> | a, pb, c | 0, u, 0 | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] c' = pc
P1c1 (7) | <2 + (0, 0, p/2 - 1/2)> | a, b, pc | | | p > 2 no conjugate subgroups |
|
[p] a' = pa, c' = -2qa + c
P1c1 (7) | <2 + (-q, 0, 0)> | pa, b, -2qa + c | | | p > 1; 0 ≤ q < p no conjugate subgroups |
|
I Minimal translationengleiche supergroups
[2] P12/c1 (13); [2] P121/c1 (14); [2] Pmc21 (26); [2] Pcc2 (27); [2] Pma2 (28); [2] Pca21 (29); [2] Pnc2 (30); [2] Pmn21 (31); [2] Pba2 (32); [2] Pna21 (33); [2] Pnn2 (34); [2] Aem2 (39); [2] Aea2 (41) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C1c1 (9); [2] A1m1 (8, C1m1); [2] I1c1 (9, C1c1) |
UNIQUE AXIS c, CELL CHOICE 1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) x + 1/2, y, -z | |
|
I Maximal translationengleiche subgroups
II Maximal klassengleiche subgroups
[2] c' = 2c
P11a (7) | <2> | a, b, 2c | |
P11a (7) | <2 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[2] b' = 2b
P11a (7) | <2> | a, 2b, c | |
P11n (7, P11a) | <2 + (0, 1, 0)> | a - 2b, 2b, c | |
[2] b' = 2b, c' = 2c
A11a (9) | <2> | a, 2b, 2c | |
A11a (9) | <2 + (0, 0, 1)> | a, 2b, 2c | 0, 0, 1/2 |
[3] c' = 3c
| P11a (7) | <2> | a, b, 3c | | P11a (7) | <2 + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P11a (7) | <2 + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
[3] a' = 3a
P11a (7) | <2 + (1, 0, 0)> | 3a, b, c | |
[3] b' = 3b
[3] a' = a - 2b, b' = 3b
P11a (7) | <2 + (0, -1, 0)> | a - 2b, 3b, c | |
[3] a' = a - 4b, b' = 3b
P11a (7) | <2 + (0, -2, 0)> | a - 4b, 3b, c | |
- Series of maximal isomorphic subgroups
[p] c' = pc
P11a (7) | <2 + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] a' = pa
P11a (7) | <2 + (p/2 - 1/2), 0, 0> | pa, b, c | | | p > 2 no conjugate subgroups |
|
[p] a' = a - 2qb, b' = pb
P11a (7) | <2 + (0, -q, 0)> | a - 2qb, pb, c | | | p > 1; 0 ≤ q < p no conjugate subgroups |
|
I Minimal translationengleiche supergroups
[2] P112/a (13); [2] P1121/a (14); [2] Pmc21 (26); [2] Pcc2 (27); [2] Pma2 (28); [2] Pca21 (29); [2] Pnc2 (30); [2] Pmn21 (31); [2] Pba2 (32); [2] Pna21 (33); [2] Pnn2 (34); [2] Aem2 (39); [2] Aea2 (41) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] A11a (9); [2] B11m (8, A11m); [2] I11a (9, A11a) |