Imm2 No. 44 Imm2 C2v20

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/21/2)+  
8 e 1
(1) xyz(2) -x-yz(3) x-yz(4) -xyz

I Maximal translationengleiche subgroups

[2] I1m1 (8C1m1)(1; 3)+-a - cba
[2] Im11 (8C1m1)(1; 4)+-b - cac
[2] I112 (5A112)(1; 2)+b, -a - bc

II Maximal klassengleiche subgroups

[2] Pnn2 (34)1; 2; (3; 4) + (1/21/21/2)
[2] Pnm21 (31Pmn21)1; 3; (2; 4) + (1/21/21/2)-bac1/4, 0, 0
[2] Pmn21 (31)1; 4; (2; 3) + (1/21/21/2)0, 1/4, 0
[2] Pmm2 (25)1; 2; 3; 4

[3] a' = 3a

braceImm2 (44)<2; 3>3abc
Imm2 (44)<3; 2 + (2, 0, 0)>3abc1, 0, 0
Imm2 (44)<3; 2 + (4, 0, 0)>3abc2, 0, 0

[3] b' = 3b

braceImm2 (44)<2; 3>a, 3bc
Imm2 (44)<(2; 3) + (0, 2, 0)>a, 3bc0, 1, 0
Imm2 (44)<(2; 3) + (0, 4, 0)>a, 3bc0, 2, 0

[3] c' = 3c

Imm2 (44)<2; 3>ab, 3c

[p] a' = pa


Imm2 (44)<3; 2 + (2u, 0, 0)>pabcu, 0, 0
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p] b' = pb


Imm2 (44)<(2; 3) + (0, 2u, 0)>apbc0, u, 0
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p] c' = pc


Imm2 (44)<2; 3>abpc
 p > 2
no conjugate subgroups

I Minimal translationengleiche supergroups

[2] Immm (71); [2] Imma (74); [2] I4mm (107); [2] I41md (109); [2] I-4m2 (119)

II Minimal non-isomorphic klassengleiche supergroups

none
[2] c' = 1/2c  Cmm2 (35); [2] a' = 1/2a  Amm2 (38); [2] b' = 1/2b  Bmm2 (38, Amm2)








































to end of page
to top of page