Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z + 1/2 | (4) y, -x, z + 1/2 |
|
I Maximal translationengleiche subgroups
II Maximal klassengleiche subgroups
[2] c' = 2c
P43 (78) | <(2; 3) + (0, 0, 1)> | a, b, 2c | |
P41 (76) | <3; 2 + (0, 0, 1)> | a, b, 2c | |
[2] a' = 2a, b' = 2b
C42 (77, P42) | <2; 3> | a - b, a + b, c | |
C42 (77, P42) | <2 + (1, 1, 0); 3 + (1, 0, 0)> | a - b, a + b, c | 1/2, 1/2, 0 |
[2] a' = 2a, b' = 2b, c' = 2c
F41 (80, I41) | <3; 2 + (0, 0, 1)> | a - b, a + b, 2c | 0, 1/2, 0 |
F41 (80, I41) | <(2; 3) + (0, 0, 1)> | a - b, a + b, 2c | 1/2, 0, 0 |
[3] c' = 3c
P42 (77) | <2; 3 + (0, 0, 1)> | a, b, 3c | |
- Series of maximal isomorphic subgroups
[p] c' = pc
P42 (77) | <2; 3 + (0, 0, p/2 - 1/2)> | a, b, pc | | | p > 2 no conjugate subgroups |
|
[p2] a' = pa, b' = pb
P42 (77) | <2 + (2u, 2v, 0); 3 + (u + v, -u + v, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for prime p ≡ 3 (mod 4) |
|
[p = q2 + r2] a' = qa - rb, b' = ra + qb
P42 (77) | <2 + (2u, 0, 0); 3 + (u, -u, 0)> | qa - rb, ra + qb, c | u, 0, 0 | | q > 0; r > 0; p > 4; 0 ≤ u < p p conjugate subgroups for prime p ≡ 1 (mod 4) |
|
I Minimal translationengleiche supergroups
[2] P42/m (84); [2] P42/n (86); [2] P4222 (93); [2] P42212 (94); [2] P42cm (101); [2] P42nm (102); [2] P42mc (105); [2] P42bc (106) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations