I-4 No. 82 I-4 S42

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/21/2)+  
8 g 1
(1) xyz(2) -x-yz(3) y-x-z(4) -yx-z

I Maximal translationengleiche subgroups

[2] I2 (5A112)(1; 2)+b, -a - bc

II Maximal klassengleiche subgroups

[2] P-4 (81)1; 2; 3; 4
[2] P-4 (81)1; 2; (3; 4) + (1/21/21/2)1/2, 0, 1/4

[3] c' = 3c

braceI-4 (82)<2; 3>ab, 3c
I-4 (82)<2; 3 + (0, 0, 2)>ab, 3c0, 0, 1
I-4 (82)<2; 3 + (0, 0, 4)>ab, 3c0, 0, 2

[p] c' = pc


I-4 (82)<2; 3 + (0, 0, 2u)>abpc0, 0, u
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p2] a' = pa, b' = pb


I-4 (82)<2 + (2u, 2v, 0); 3 + (u - vu + v, 0)>papbcuv, 0
 p > 2; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups for prime p ≡ 3 (mod 4)

[p = q2 + r2] a' = qa - rb, b' = ra + qb


I-4 (82)<2 + (2u, 0, 0); 3 + (uu, 0)>qa - rbra + qbcu, 0, 0
 q > 0; r > 0; p > 4; 0 ≤ u < p
p conjugate subgroups for prime p ≡ 1 (mod 4)

I Minimal translationengleiche supergroups

[2] I4/m (87); [2] I41/a (88); [2] I-4m2 (119); [2] I-4c2 (120); [2] I-42m (121); [2] I-42d (122)

II Minimal non-isomorphic klassengleiche supergroups

none
[2] c' = 1/2c  C-4 (81, P-4)








































to end of page
to top of page