ORIGIN CHOICE 1, Origin at -4 on n, at -1/4, 1/4, 0 from -1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) -y + 1/2, x + 1/2, z | (4) y + 1/2, -x + 1/2, z | (5) -x + 1/2, -y + 1/2, -z | (6) x + 1/2, y + 1/2, -z | (7) y, -x, -z | (8) -y, x, -z |
|
I Maximal translationengleiche subgroups
[2] P-4 (81) | 1; 2; 7; 8 |
|
|
[2] P4 (75) | 1; 2; 3; 4 |
| 1/2, 0, 0
|
[2] P2/n (13, P112/a) | 1; 2; 5; 6 | -a - b, a, c
| 1/4, 1/4, 0
|
II Maximal klassengleiche subgroups
[2] c' = 2c
P42/n (86) | <2; 5; 3 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
P42/n (86) | <2; (3; 5) + (0, 0, 1)> | a, b, 2c | |
P4/n (85) | <2; 3; 5> | a, b, 2c | |
P4/n (85) | <2; 3; 5 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[3] c' = 3c
| P4/n (85) | <2; 3; 5> | a, b, 3c | | P4/n (85) | <2; 3; 5 + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P4/n (85) | <2; 3; 5 + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P4/n (85) | <2; 3; 5 + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P4/n (85) | <2 + (2u, 2v, 0); 3 + (p/2 - 1/2 + u + v, p/2 - 1/2 - u + v, 0); 5 + (p/2 - 1/2 + 2u, p/2 - 1/2 + 2v, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for prime p ≡ 3 (mod 4) |
|
[p = q2 + r2] a' = qa - rb, b' = ra + qb
P4/n (85) | <2 + (2u, 0, 0); 3 + (q/2 + r/2 - 1/2 + u, q/2 - r/2 - 1/2 - u, 0); 5 + (q/2 + r/2 - 1/2 + 2u, q/2 - r/2 - 1/2, 0)> | qa - rb, ra + qb, c | u, 0, 0 | | q > 0; r > 0; p > 4; 0 ≤ u < p p conjugate subgroups for prime p ≡ 1 (mod 4) |
|
I Minimal translationengleiche supergroups
[2] P4/nbm (125); [2] P4/nnc (126); [2] P4/nmm (129); [2] P4/ncc (130) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C4/m (83, P4/m); [2] I4/m (87) |