P4212 No. 90 P4212 D42

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
8 g 1
(1) xyz(2) -x-yz(3) -y + 1/2x + 1/2z(4) y + 1/2-x + 1/2z
(5) -x + 1/2y + 1/2-z(6) x + 1/2-y + 1/2-z(7) yx-z(8) -y-x-z

I Maximal translationengleiche subgroups

[2] P411 (75P4)1; 2; 3; 4 0, 1/2, 0
[2] P212 (21C222)1; 2; 7; 8a - ba + bc
[2] P2211 (18P21212)1; 2; 5; 6

II Maximal klassengleiche subgroups

[2] c' = 2c

P42212 (94)<2; 5; 3 + (0, 0, 1)>ab, 2c0, 0, 1/2
P42212 (94)<2; (3; 5) + (0, 0, 1)>ab, 2c
P4212 (90)<2; 3; 5>ab, 2c
P4212 (90)<2; 3; 5 + (0, 0, 1)>ab, 2c0, 0, 1/2

[3] c' = 3c

braceP4212 (90)<2; 3; 5>ab, 3c
P4212 (90)<2; 3; 5 + (0, 0, 2)>ab, 3c0, 0, 1
P4212 (90)<2; 3; 5 + (0, 0, 4)>ab, 3c0, 0, 2

[p] c' = pc


P4212 (90)<2; 3; 5 + (0, 0, 2u)>abpc0, 0, u
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p2] a' = pa, b' = pb


P4212 (90)<2 + (2u, 2v, 0); 3 + (p/2 - 1/2 + u + vp/2 - 1/2 - u + v, 0); 5 + (p/2 - 1/2 + 2up/2 - 1/2, 0)>papbcuv, 0
 p > 2; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups for the prime p

I Minimal translationengleiche supergroups

[2] P4/mbm (127); [2] P4/mnc (128); [2] P4/nmm (129); [2] P4/ncc (130)

II Minimal non-isomorphic klassengleiche supergroups

[2] C422 (89, P422); [2] I422 (97)
none








































to end of page
to top of page