P42nm No. 102 P42nm C4v4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
8 d 1
(1) xyz(2) -x-yz(3) -y + 1/2x + 1/2z + 1/2(4) y + 1/2-x + 1/2z + 1/2
(5) x + 1/2-y + 1/2z + 1/2(6) -x + 1/2y + 1/2z + 1/2(7) -y-xz(8) yxz

I Maximal translationengleiche subgroups

[2] P4211 (77P42)1; 2; 3; 4 0, 1/2, 0
[2] P21m (35Cmm2)1; 2; 7; 8a - ba + bc
[2] P2n1 (34Pnn2)1; 2; 5; 6

II Maximal klassengleiche subgroups

[2] a' = 2a, b' = 2b, c' = 2c

F41dc (110, I41cd)<2; 3; 5 + (0, 0, 1)>a - ba + b, 2c
F41dc (110, I41cd)<2; 5; 3 + (0, 0, 1)>a - ba + b, 2c1/21/2, 0
F41dm (109, I41md)<2; 3; 5>a - ba + b, 2c
F41dm (109, I41md)<2; (3; 5) + (0, 0, 1)>a - ba + b, 2c1/21/2, 0

[3] c' = 3c

P42nm (102)<2; (3; 5) + (0, 0, 1)>ab, 3c

[p] c' = pc


P42nm (102)<2; (3; 5) + (0, 0, p/2 - 1/2)>abpc
 p > 2
no conjugate subgroups

[p2] a' = pa, b' = pb


P42nm (102)<2 + (2u, 2v, 0); 3 + (p/2 - 1/2 + u + vp/2 - 1/2 - u + v, 0); 5 + (p/2 - 1/2p/2 - 1/2 + 2v, 0)>papbcuv, 0
 p > 2; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups for the prime p

I Minimal translationengleiche supergroups

[2] P42/nnm (134); [2] P42/mnm (136)

II Minimal non-isomorphic klassengleiche supergroups

[2] C42cm (105, P42mc); [2] I4mm (107)
[2] c' = 1/2c  P4bm (100)








































to end of page
to top of page