Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z | (5) -x + 1/2, y + 1/2, -z + 1/2 | (6) x + 1/2, -y + 1/2, -z + 1/2 | (7) -y + 1/2, -x + 1/2, z + 1/2 | (8) y + 1/2, x + 1/2, z + 1/2 |
|
I Maximal translationengleiche subgroups
[2] P-411 (81, P-4) | 1; 2; 3; 4 |
|
|
[2] P21c (37, Ccc2) | 1; 2; 7; 8 | a - b, a + b, c
| 0, 1/2, 0
|
[2] P2211 (18, P21212) | 1; 2; 5; 6 |
| 0, 0, 1/4
|
II Maximal klassengleiche subgroups
[3] c' = 3c
 | P-421c (114) | <2; 3; 5 + (0, 0, 1)> | a, b, 3c | | P-421c (114) | <2; 3 + (0, 0, 2); 5 + (0, 0, 3)> | a, b, 3c | 0, 0, 1 | P-421c (114) | <2; 3 + (0, 0, 4); 5 + (0, 0, 5)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P-421c (114) | <2; 3 + (0, 0, 2u); 5 + (0, 0, p/2 - 1/2 + 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P-421c (114) | <2 + (2u, 2v, 0); 3 + (u - v, u + v, 0); 5 + (p/2 - 1/2 + 2u, p/2 - 1/2, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
[2] P4/mnc (128); [2] P4/ncc (130); [2] P42/mbc (135); [2] P42/nmc (137) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C-42c (116, P-4c2); [2] I-42m (121) |
[2] c' = 1/2c P-421m (113) |