Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z | (5) x + 1/2, -y + 1/2, z | (6) -x + 1/2, y + 1/2, z | (7) y + 1/2, x + 1/2, -z | (8) -y + 1/2, -x + 1/2, -z |
|
I Maximal translationengleiche subgroups
[2] P-411 (81, P-4) | 1; 2; 3; 4 |
|
|
[2] P2b1 (32, Pba2) | 1; 2; 5; 6 |
|
|
[2] P212 (21, C222) | 1; 2; 7; 8 | a - b, a + b, c
| 0, 1/2, 0
|
II Maximal klassengleiche subgroups
[2] c' = 2c
P-4n2 (118) | <2; 3; 5 + (0, 0, 1)> | a, b, 2c | |
P-4n2 (118) | <2; (3; 5) + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
P-4b2 (117) | <2; 3; 5> | a, b, 2c | |
P-4b2 (117) | <2; 5; 3 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[3] c' = 3c
| P-4b2 (117) | <2; 3; 5> | a, b, 3c | | P-4b2 (117) | <2; 5; 3 + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P-4b2 (117) | <2; 5; 3 + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P-4b2 (117) | <2; 5; 3 + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P-4b2 (117) | <2 + (2u, 2v, 0); 3 + (u - v, u + v, 0); 5 + (p/2 - 1/2, p/2 - 1/2 + 2v, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
[2] P4/nbm (125); [2] P4/mbm (127); [2] P42/nbc (133); [2] P42/mbc (135) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C-4m2 (111, P-42m); [2] I-4c2 (120) |