Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x + 1/2, -y, z + 1/2 | (3) -x, y + 1/2, -z + 1/2 | (4) x + 1/2, -y + 1/2, -z | (5) z, x, y | (6) z + 1/2, -x + 1/2, -y | (7) -z + 1/2, -x, y + 1/2 | (8) -z, x + 1/2, -y + 1/2 | (9) y, z, x | (10) -y, z + 1/2, -x + 1/2 | (11) y + 1/2, -z + 1/2, -x | (12) -y + 1/2, -z, x + 1/2 |
|
I Maximal translationengleiche subgroups
[3] P211 (19, P212121) | 1; 2; 3; 4 |
|
|
| [4] P13 (146, R3) | 1; 5; 9 | a - b, b - c, a + b + c
|
| [4] P13 (146, R3) | 1; 6; 12 | -a - b, b + c, -a + b - c
| 0, 1/2, 1/2
| [4] P13 (146, R3) | 1; 7; 10 | a + b, -b + c, a - b - c
| 1/2, 1/2, 0
| [4] P13 (146, R3) | 1; 8; 11 | -a + b, -b - c, -a - b + c
| 1/2, 0, 1/2
|
|
II Maximal klassengleiche subgroups
- Series of maximal isomorphic subgroups
[p3] a' = pa, b' = pb, c' = pc
P213 (198) | <2 + (p/2 - 1/2 + 2u, 2v, p/2 - 1/2); 3 + (2u, p/2 - 1/2, p/2 - 1/2 + 2w); 5 + (u - w, -u + v, -v + w)> | pa, pb, pc | u, v, w | | p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p p3 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
[2] Pa-3 (205); [2] P4332 (212); [2] P4132 (213) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations