Pn-3 No. 201 P2/n-3 Th2

ORIGIN CHOICE 1, Origin at 2 3, at -1/4, -1/4, -1/4 from centre (-3)

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (13)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
24 h 1
(1) xyz(2) -x-yz(3) -xy-z(4) x-y-z
(5) zxy(6) z-x-y(7) -z-xy(8) -zx-y
(9) yzx(10) -yz-x(11) y-z-x(12) -y-zx
(13) -x + 1/2-y + 1/2-z + 1/2(14) x + 1/2y + 1/2-z + 1/2(15) x + 1/2-y + 1/2z + 1/2(16) -x + 1/2y + 1/2z + 1/2
(17) -z + 1/2-x + 1/2-y + 1/2(18) -z + 1/2x + 1/2y + 1/2(19) z + 1/2x + 1/2-y + 1/2(20) z + 1/2-x + 1/2y + 1/2
(21) -y + 1/2-z + 1/2-x + 1/2(22) y + 1/2-z + 1/2x + 1/2(23) -y + 1/2z + 1/2x + 1/2(24) y + 1/2z + 1/2-x + 1/2

I Maximal translationengleiche subgroups

[2] P23 (195)1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12
[3] Pn1 (48Pnnn)1; 2; 3; 4; 13; 14; 15; 16
brace[4] P1-3 (148R-3)1; 5; 9; 13; 17; 21a - bb - ca + b + c 1/41/41/4
[4] P1-3 (148R-3)1; 6; 12; 13; 18; 24-a - bb + c, -a + b - c 3/41/43/4
[4] P1-3 (148R-3)1; 7; 10; 13; 19; 22a + b, -b + ca - b - c 1/43/43/4
[4] P1-3 (148R-3)1; 8; 11; 13; 20; 23-a + b, -b - c, -a - b + c 3/43/41/4

II Maximal klassengleiche subgroups

[2] a' = 2a, b' = 2b, c' = 2c

Fd-3 (203)<2; 3; 5; 13>2a, 2b, 2c
Fd-3 (203)<2; 3; 5; 13 + (1, 1, 1)>2a, 2b, 2c1/21/21/2

[p3] a' = pa, b' = pb, c' = pc


Pn-3 (201)<2 + (2u, 2v, 0); 3 + (2u, 0, 2v); 5 + (u - w, -u + v, -v + w); 13 + (p/2 - 1/2 + 2up/2 - 1/2 + 2vp/2 - 1/2 + 2w)>papbpcuvw
 p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p
p3 conjugate subgroups for the prime p

I Minimal translationengleiche supergroups

[2] Pn-3n (222); [2] Pn-3m (224)

II Minimal non-isomorphic klassengleiche supergroups

[2] Im-3 (204); [4] Fm-3 (202)
none








































to end of page
to top of page