Pn-3 No. 201 P2/n-3 Th2

ORIGIN CHOICE 2, Origin at centre -3, at 1/41/41/4 from 2 3

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (13)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
24 h 1
(1) xyz(2) -x + 1/2-y + 1/2z(3) -x + 1/2y-z + 1/2(4) x-y + 1/2-z + 1/2
(5) zxy(6) z-x + 1/2-y + 1/2(7) -z + 1/2-x + 1/2y(8) -z + 1/2x-y + 1/2
(9) yzx(10) -y + 1/2z-x + 1/2(11) y-z + 1/2-x + 1/2(12) -y + 1/2-z + 1/2x
(13) -x-y-z(14) x + 1/2y + 1/2-z(15) x + 1/2-yz + 1/2(16) -xy + 1/2z + 1/2
(17) -z-x-y(18) -zx + 1/2y + 1/2(19) z + 1/2x + 1/2-y(20) z + 1/2-xy + 1/2
(21) -y-z-x(22) y + 1/2-zx + 1/2(23) -yz + 1/2x + 1/2(24) y + 1/2z + 1/2-x

I Maximal translationengleiche subgroups

[2] P23 (195)1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 1/41/41/4
[3] Pn1 (48Pnnn)1; 2; 3; 4; 13; 14; 15; 16
brace[4] P1-3 (148R-3)1; 5; 9; 13; 17; 21a - bb - ca + b + c
[4] P1-3 (148R-3)1; 6; 12; 13; 18; 24-a - bb + c, -a + b - c 1/2, 0, 1/2
[4] P1-3 (148R-3)1; 7; 10; 13; 19; 22a + b, -b + ca - b - c 0, 1/21/2
[4] P1-3 (148R-3)1; 8; 11; 13; 20; 23-a + b, -b - c, -a - b + c 1/21/2, 0

II Maximal klassengleiche subgroups

[2] a' = 2a, b' = 2b, c' = 2c

Fd-3 (203)<2; 3; 5; 13>2a, 2b, 2c
Fd-3 (203)<2; 3; 5; 13 + (1, 1, 1)>2a, 2b, 2c1/21/21/2

[p3] a' = pa, b' = pb, c' = pc


Pn-3 (201)<2 + (p/2 - 1/2 + 2up/2 - 1/2 + 2v, 0); 3 + (p/2 - 1/2 + 2u, 0, p/2 - 1/2 + 2w); 5 + (u - w, -u + v, -v + w); 13 + (2u, 2v, 2w)>papbpcuvw
 p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p
p3 conjugate subgroups for the prime p

I Minimal translationengleiche supergroups

[2] Pn-3n (222); [2] Pn-3m (224)

II Minimal non-isomorphic klassengleiche supergroups

[2] Im-3 (204); [4] Fm-3 (202)
none








































to end of page
to top of page