Fdd2 No. 43 C2v19


Axes Coordinates Wyckoff positions
8a 16b
I Maximal translationengleiche subgroups
[2] Cc11 (9) a, b, (1/2)(-b + c) x + (1/8), y + z, 2z 4a 2 × 4a
[conventional setting] C1c1 b, -a, (1/2)(-b + c) y + z, -x - (1/8), 2z
[2] C1c1 (9) a, b, (1/2)(-a + c) x + z, y + (1/8), 2z 4a 2 × 4a
[2] A112 (5) (1/2)(a - b), b, c 2x, x + y, z 2a; 2b 2 × 4c
II Maximal klassengleiche subgroups
   Enlarged unit cell, isomorphic
[3] Fdd2 3a, b, c (1/3)x + (1/4), y + (1/4), z; ±((1/3), 0, 0) 8a; 16b 3 × 16b
[5] Fdd2 5a, b, c (1/5)x, y, z; ±((1/5), 0, 0); ±((2/5), 0, 0) 8a; 2 × 16b 5 × 16b
[p] Fdd2 pa, b, c (1/p)x + s, y + s, z; +((u/p), 0, 0) 8a; ((p - 1)/2) × 16b p × 16b
p = prime; u = 1, . . ., p - 1
s = 0  if p = 4n + 1
s = (1/4) if p = 4n - 1
[3] Fdd2 a, 3b, c x + (1/4), (1/3)y + (1/4), z; ±(0, (1/3), 0) 8a; 16b 3 × 16b
[5] Fdd2 a, 5b, c x, (1/5)y, z; ±(0, (1/5), 0); ±(0, (2/5), 0) 8a; 2 × 16b 5 × 16b
[p] Fdd2 a, pb, c x + s, (1/p)y + s, z; +(0, (u/p), 0) 8a; ((p - 1)/2) × 16b p × 16b
p = prime; u = 1, . . ., p - 1
s = 0  if p = 4n + 1
s = (1/4) if p = 4n - 1
[3] Fdd2 a, b, 3c x + (1/4), y + (1/4), (1/3)z; ±(0, 0, (1/3)) 3 × 8a 3 × 16b
[5] Fdd2 a, b, 5c x, y, (1/5)z; ±(0, 0, (1/5)); ±(0, 0, (2/5)) 5 × 8a 5 × 16b
[p] Fdd2 a, b, pc x + s, y + s, (1/p)z; +(0, 0, (u/p)) p × 8a p × 16b
p = prime; u = 1, . . ., p - 1
s = 0  if p = 4n + 1
s = (1/4) if p = 4n - 1


Nonconventional settings
        interchange letters and sequences in Hermann-Mauguin symbols, axes and coordinates:
F2dd AB; CA ca abca xyzx
Fd2d AC; CB cb abca xyzx










































to end of page
to top of page