Pbca No. 61 P21/b21/c21/a D2h15


Axes Coordinates Wyckoff positions
4a 4b 8c
I Maximal translationengleiche subgroups
[2] P21ca (29) x, y + (1/4), z 4a 4a 2 × 4a
[conventional setting]Pca21 c, b, -a z, y + (1/4), -x
[2] Pb21a (29) x, y, z + (1/4) 4a 4a 2 × 4a
[conventional setting]Pca21 a, c, -b x, z + (1/4), -y
[2] Pbc21 (29) x + (1/4), y, z 4a 4a 2 × 4a
[conventional setting]Pca21 b, a, -c y, x + (1/4), -z
[2] P212121 (19) 4a 4a 2 × 4a
[2] P21/b11 (14) 2a; 2d 2b; 2c 2 × 4e
[conventional setting]P121/c1 c, a, b z, x, y
[2] P121/c1 (14) 2a; 2d 2b; 2c 2 × 4e
[2] P1121/a (14) 2a; 2d 2b; 2c 2 × 4e
II Maximal klassengleiche subgroups
   Enlarged unit cell, isomorphic
[3] Pbca 3a, b, c (1/3)x, y, z; ±((1/3), 0, 0) 4a; 8c 4b; 8c 3 × 8c
[p] Pbca pa, b, c (1/p)x, y, z; +((u/p), 0, 0) 4a; ((p - 1)/2) × 8c 4b; ((p - 1)/2) × 8c p × 8c
p = prime > 2; u = 1, . . ., p - 1
[3] Pbca a, 3b, c x, (1/3) y, z; ±(0, (1/3), 0) 4a; 8c 4b; 8c 3 × 8c
[p] Pbca a, pb, c x, (1/p) y, z; +(0, (u/p), 0) 4a; ((p - 1)/2) × 8c 4b; ((p - 1)/2) × 8c p × 8c
p = prime > 2; u = 1, . . ., p - 1
[3] Pbca a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 4a; 8c 4b; 8c 3 × 8c
[p] Pbca a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) 4a; ((p - 1)/2) × 8c 4b; ((p - 1)/2) × 8c p × 8c
p = prime > 2; u = 1, . . ., p - 1


Nonconventional settings
        interchange letters and sequences in Hermann-Mauguin symbols, axes and coordinates:
Pcab a<-> b a<-> -b x<-> -y










































to end of page
to top of page