P42/n No. 86 C4h4


Axes Coordinates Wyckoff positions
origin 1 origin 2 2a 2b 4c 4d 4e 4f 8g
I Maximal translationengleiche subgroups
[2] P42 (77) x + (1/2), y, z x + (1/4), y - (1/4), z 2c 2c 4d 4d 2a; 2b 2 × 2c 2 × 4d
[2] P-4 (81) x + (1/4), y + (1/4), z + (1/4) 1a; 1d 1b; 1c 4h 4h 2 × 2g 2e; 2f 2 × 4h
[2] P112/n (13) x - (1/4), y - (1/4), z - (1/4) 2e 2e 2a; 2b 2c; 2d 2 × 2f 2 × 2e 2 × 4g
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[2] I41/a a - b, (1/2)(x - y), (1/2)(x + y), (1/2)z; +(0, 0, (1/2)) 4a; 4b 8e 8c; 8d 16f 16f 2 × 8e 2 × 16f
(88) a + b, 2c
[2] I41/a a - b, (1/2)(x - y), (1/2)(x + y), (1/2)z + (1/4); +(0, 0, (1/2)) 8e 4a; 4b 16f 8c; 8d 16f 2 × 8e 2 × 16f
(88) a + b, 2c
[2] I41/a a - b, (1/2)(x - y) + (1/2), (1/2)(x + y), (1/2)z; +(0, 0, (1/2)) 8e 4a; 4b 8c; 8d 16f 16f 2 × 8e 2 × 16f
(88) a + b, 2c
[2] I41/a a - b, (1/2)(x - y) + (1/2), (1/2)(x + y), (1/2)z + (1/4); 4a; 4b 8e 16f 8c; 8d 16f 2 × 8e 2 × 16f
(88) a + b, 2c +(0, 0, (1/2))
   Enlarged unit cell, isomorphic
[3] P42/n a, b, 3c x, y, (1/3)z; x, y, (1/3)z; 2a(b*); 4f 2b(a*); 4f 4d(c*); 8g 4c(d*); 8g 3 × 4e 3 × 4f 3 × 8g
±(0, 0, (1/3)) ±(0, 0, (1/3))
[p] P42/n a, b, pc x, y, (1/p)z; x, y, (1/p)z; 2a(b† ); 2b(a† ); 4c(d‡ ); 4d(c‡ ); p × 4e p × 4f p × 8g
+(0, 0, (u/p)) +(0, 0, (u/p)) ((p - 1)/2) × 4f ((p - 1)/2) × 4f ((p - 1)/2) × 8g ((p - 1)/2) × 8g
p = prime > 2; u = 1, . . ., p - 1
[5] P42/n a + 2b, (1/5)(x + 2y), (1/5)(x + 2y), 2a(b*); 8g 2b(a*); 8g 4c; 2 × 8g 4d; 2 × 8g 4e; 2 × 8g 4f; 2 × 8g 5 × 8g
-2a + b, c (1/5)(-2x + y), z; (1/5)(-2x + y), z;
±((1/5), (3/5), 0); ±((2/5), (1/5), 0)  
[5] P42/n a - 2b, (1/5)(x - 2y), (1/5)(x - 2y), 2a(b*); 8g 2b(a*); 8g 4c; 2 × 8g 4d; 2 × 8g 4e; 2 × 8g 4f; 2 × 8g 5 × 8g
2a + b, c (1/5)(2x + y), z; (1/5)(2x + y), z;
±((1/5), (2/5), 0); ±((3/5), (1/5), 0)  
[p] P42/n qa - rb, (1/p)(qx - ry), (1/p)(qx - ry), 2a(b**); 2b(a**); 4c; 4d; 4e; 4f; p × 8g
ra + qb, c (1/p)(rx + qy), z; (1/p)(rx + qy), z; ((p - 1)/4) × 8g ((p - 1)/4) × 8g ((p - 1)/2) × 8g ((p - 1)/2) × 8g ((p - 1)/2) × 8g ((p - 1)/2) × 8g
+((uq/p), (ur/p), 0) +((uq/p), (ur/p), 0)
p = q2 + r2 = prime = 4n + 1;
q = 2n + 1≥ 1; r = ± 2n' ≠ 0; u = 1, . . ., p - 1
[9] P42/n 3a, 3b, c (1/3)x, (1/3)y, z; (1/3)x, (1/3)y, z; 2a(b**); 2b(a**); 4c; 4 × 8g 4d; 4 × 8g 4e; 4 × 8g 4f; 4 × 8g 9 × 8g
 ±((1/3), 0, 0); ±(0, (1/3), 0);    2 × 8g 2 × 8g
 ±((1/3), (1/3), 0); ±((1/3), (2/3), 0)  
[p2] P42/n pa, pb, c (1/p)x, (1/p)y, z; (1/p)x, (1/p)y, z; 2a(b† ); 2b(a† ); 4c; 4d; 4e; 4f; p2 × 8g
+((u/p), (v/p), 0) +((u/p), (v/p), 0) ((p2 - 1)/4) × 8g ((p2 - 1)/4) × 8g ((p2 - 1)/2) × 8g ((p2 - 1)/2) × 8g ((p2 - 1)/2) × 8g ((p2 - 1)/2) × 8g
p = prime = 4n - 1; u, v = 1, . . ., p - 1
 * origin 2
 † origin 2 and p = 4n - 1
 ‡ origin 1 and p = 4n - 1
 ** origin 2 and q + r = 4n - 1










































to end of page
to top of page