P3c1 No. 158 C3v3


Axes Coordinates Wyckoff positions
2a 2b 2c 6d
I Maximal translationengleiche subgroups
[2] P3 (143) 2 × 1a 2 × 1b 2 × 1c 2 × 3d
[3] C1c1(9) 2a + b, b, c (1/2)x, -(1/2)x + y, z 4a 4a 4a 3 × 4a
 conjugate: a - b, a + b, c (1/2)(x - y), (1/2)(x + y), z
 conjugate: a + 2b, -a, c (1/2)y, -x + (1/2)y, z
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[3] P31c (159) 2a + b, -a + b, c (1/3)(x + y), (1/3)(-x + 2y), z; ±((2/3), (1/3), 0) 2a; 2 × 2b 6c 6c 3 × 6c
[3] P31c (159) 2a + b, -a + b, c (1/3)(x + y) - (1/3), (1/3)(-x + 2y), z; ±((2/3), (1/3), 0) 6c 6c 2a; 2 × 2b 3 × 6c
[3] P31c (159) 2a + b, -a + b, c (1/3)(x + y) + (1/3), (1/3)(-x + 2y), z; ±((2/3), (1/3), 0) 6c 2a; 2 × 2b 6c 3 × 6c
   Enlarged unit cell, isomorphic
[3] P3c1 a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3 × 2a 3 × 2b 3 × 2c 3 × 6d
[p] P3c1 a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 2a p × 2b p × 2c p × 6d
p = prime > 2; u = 1, . . ., p - 1
[4] P3c1 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0); 2a; 6d 2c; 6d 2b; 6d 4 × 6d
+(0, (1/2), 0); +((1/2), (1/2), 0)
[p2] P3c1 pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0) 2a; ((p2 - 1)/3) × 6d 2b(c*); ((p2 - 1)/3) × 6d 2c(b*); ((p2 - 1)/3) × 6d p2 × 6d
p = prime ≠ 3; u, v = 1, . . ., p - 1
* p = 3n - 1










































to end of page
to top of page