|
Axes |
Coordinates |
Wyckoff positions |
|
|
|
1a |
1b |
2c |
2d |
2e |
3f |
3g |
|
|
|
|
|
4h |
6i |
6j |
6k |
12l |
I Maximal translationengleiche subgroups |
[2] P-6 (174) |
|
|
1a |
1b |
1c; 1e |
1d; 1f |
2g |
3j |
3k |
|
|
|
|
|
2h; 2i |
6l |
2 × 3j |
2 × 3k |
2 × 6l |
[2] P6 (168) |
|
|
1a |
1a |
2b |
2b |
2 × 1a |
3c |
3c |
|
|
|
|
|
2 × 2b |
2 × 3c |
6d |
6d |
2 × 6d |
[2] P-3 (147) |
|
|
1a |
1b |
2d |
2d |
2c |
3e |
3f |
|
|
|
|
|
2 × 2d |
6g |
6g |
6g |
2 × 6g |
[3] P112/m |
|
|
1a |
1b |
2m |
2n |
2i |
1c; 1d; 1g |
1e; 1f; 1h |
(10) |
|
|
|
|
4o |
2j; 2k; 2l |
3 × 2m |
3 × 2n |
3 × 4o |
II Maximal klassengleiche subgroups |
Enlarged unit cell, non-isomorphic |
[2] P63/m |
a, b, 2c |
x, y, (1/2)z; +(0, 0, (1/2)) |
2b |
2a |
4f |
2c; 2d |
4e |
6g |
6h |
(176) |
|
|
|
|
2 × 4f |
12i |
12i |
2 × 6h |
2 × 12i |
[2] P63/m |
a, b, 2c |
x, y, (1/2)z + (1/4); +(0, 0, (1/2)) |
2a |
2b |
2c; 2d |
4f |
4e |
6h |
6g |
(176) |
|
|
|
|
2 × 4f |
12i |
2 × 6h |
12i |
2 × 12i |
Enlarged unit cell, isomorphic |
[2] P6/m |
a, b, 2c |
x, y, (1/2)z; +(0, 0, (1/2)) |
1a; 1b |
2e |
2c; 2d |
4h |
2 × 2e |
3f; 3g |
6i |
|
|
|
|
|
2 × 4h |
2 × 6i |
6j; 6k |
12l |
2 × 12l |
[2] P6/m |
a, b, 2c |
x, y, (1/2)z + (1/4); +(0, 0, (1/2)) |
2e |
1a; 1b |
4h |
2c; 2d |
2 × 2e |
6i |
3f; 3g |
|
|
|
|
|
2 × 4h |
2 × 6i |
12l |
6j; 6k |
2 × 12l |
[3] P6/m |
a, b, 3c |
x, y, (1/3)z; ±(0, 0, (1/3)) |
1a; 2e |
1b; 2e |
2c; 4h |
2d; 4h |
3 × 2e |
3f; 6i |
3g; 6i |
|
|
|
|
|
3 × 4h |
3 × 6i |
6j; 12l |
6k; 12l |
3 × 12l |
[p] P6/m |
a, b, pc |
x, y, (1/p)z; +(0, 0, (u/p)) |
1a; |
1b; |
2c; |
2d; |
p × 2e |
3f; |
3g; |
|
p = prime > 2; u = 1, . . ., p - 1 |
((p - 1)/2) × 2e |
((p - 1)/2) × 2e |
((p - 1)/2) × 4h |
((p - 1)/2) × 4h |
|
((p - 1)/2) × 6i |
((p - 1)/2) × 6i |
|
|
|
|
|
p × 4h |
p × 6i |
6j; |
6k; |
p × 12l |
|
|
|
|
|
|
|
((p - 1)/2) × 12l |
((p - 1)/2) × 6l |
|
[3] P6/m |
2a + b, |
(1/3)(x + y), (1/3)(-x + 2y), z; |
1a; 2c |
1b; 2d |
6j |
6k |
2e; 4h |
3f; 6j |
3g; 6k |
|
-a + b, c |
±((2/3), (1/3), 0) |
|
|
12l |
6i; 12l |
3 × 6j |
3 × 6k |
3 × 12l |
[7] P6/m |
3a + b, |
(1/7)(2x + y), (1/7)(-x + 3y), z; |
1a; 6j |
1b; 6k |
2c; 2 × 6j |
2d; 2 × 6k |
2e; 12l |
3f; 3 × 6j |
3g; 3 × 6k |
|
-a + 2b, c |
±((1/7), (3/7), 0); ±((3/7), (2/7), 0); ±((5/7), (1/7), 0) |
|
|
4h; 2 × 12l |
6i; 3 × 12l |
7 × 6j |
7 × 6k |
7 × 12l |
[7] P6/m |
3a + 2b, |
(1/7)(x + 2y), (1/7)(-2x + 3y), z; |
1a; 6j |
1b; 6k |
2c; 2 × 6j |
2d; 2 × 6k |
2e; 12l |
3f; 3 × 6j |
3g; 3 × 6k |
|
-2a + b, c |
±((2/7), (3/7), 0); ±((3/7), (1/7), 0); ±((1/7), (5/7), 0) |
|
|
4h; 2 × 12l |
6i; 3 × 12l |
7 × 6j |
7 × 6k |
7 × 12l |
[p] P6/m |
qa + rb, |
(1/p)((q - r)x + ry), |
1a; |
1b; |
2c; |
2d; |
2e; |
3f; |
3g; |
|
-ra +(q - r)b, c |
(1/p)(-rx + qy), z; +((ur/p), (uq/p), 0) |
((p - 1)/6) × 6j |
((p - 1)/6) × 6k |
((p - 1)/3) × 6j |
((p - 1)/3) × 6k |
((p - 1)/6) × 12l |
((p - 1)/2) × 6j |
((p - 1)/2) × 6k |
|
p = q2 - qr + r2 = prime = 6n + 1; |
|
|
4h; |
6i; |
p × 6j |
p × 6k |
p × 12l |
|
q, r = 1, 2, . . .; q> r; u = 1, . . ., p - 1 |
|
|
((p - 1)/3) × 12l |
((p - 1)/2) × 12l |
|
|
|
[4] P6/m |
2a, 2b, c |
(1/2)x, (1/2)y, z; +((1/2), 0, 0); |
1a; 3f |
1b; 3g |
2c; 6j |
2d; 6k |
2e; 6i |
2 × 6j |
2 × 6k |
|
|
+(0, (1/2), 0); +((1/2), (1/2), 0) |
|
|
4h; 12l |
2 × 12l |
4 × 6j |
4 × 6k |
4 × 12l |
[p2] P6/m |
pa, pb, c |
(1/p)x, (1/p)y, z; +((u/p), (v/p), 0) |
1a; |
1b; |
2c; |
2d; |
2e; |
3f; |
3g; |
|
p = prime = 6n - 1; u, v = 1, . . ., p - 1 |
((p2 - 1)/6) × 6j |
((p2 - 1)/6) × 6k |
((p2 - 1)/3) × 6j |
((p2 - 1)/3) × 6k |
((p2 - 1)/6) × 12l |
((p2 - 1)/2) × 6j |
((p2 - 1)/2) × 6k |
|
|
|
|
|
4h; |
6i; |
p2 × 6j |
p2 × 6k |
p2 × 12l |
|
|
|
|
|
((p2 - 1)/3) × 12l |
((p2 - 1)/2) × 12l |
|
|
|