P63mc No. 186 C6v4


Axes Coordinates Wyckoff positions
2a 2b 6c 12d
I Maximal translationengleiche subgroups
[2] P63 (173) 2a 2b 6c 2 × 6c
[2] P31c (159) 2a 2b 6c 2 × 6c
[2] P3m1 (156) 2 × 1a 1b; 1c 2 × 3d 2 × 6e
[3] Cmc21 (36) a, a + 2b, c x - (1/2)y, (1/2)y, z 4a 4a 4a; 8b 3 × 8b
 conjugate: b, -2a - b, c -(1/2)x + y, -(1/2)x, z
 conjugate: -a - b, a - b, c -(1/2)(x + y), (1/2)(x - y), z
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[3] P63cm (185) 2a + b, -a + b, c (1/3)(x + y), (1/3)(-x + 2y), z; 2a; 4b 6c 6c; 12d 3 × 12d
±((1/3), (2/3), 0)
   Enlarged unit cell, isomorphic
[3] P63mc a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3 × 2a 3 × 2b 3 × 6c 3 × 12d
[p] P63mc a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 2a p × 2b p × 6c p × 12d
p = prime > 2; u = 1, . . ., p - 1
[4] P63mc 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0); 2a; 6c 2b; 6c 2 × 6c; 12d 4 × 12d
+(0, (1/2), 0); +((1/2), (1/2), 0)
[p2] P63mc pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0) 2a; (p - 1) × 6c; 2b; (p - 1) × 6c; p × 6c; p2 × 12d
p = prime ≠ 3; u, v = 1, . . ., p - 1 (((p - 1)(p - 2))/6) × 12d (((p - 1)(p - 2))/6) × 12d ((p(p - 1))/2) × 12d










































to end of page
to top of page