
APPENDIX
Differences in the presentation of Parts 2 and 3

BY ULRICH MÜLLER AND HANS WONDRATSCHEK

A1. Comparison of the approaches to subgroups in Parts 2
and 3

The tables in Parts 2 and 3 of this volume deal with two different
aspects of the reduction of crystal symmetry. In Part 2, the loss of
symmetry is described for the subgroupH of G by listing thegen-
eral positionof H, i.e. a set of representatives of those symmetry
operations (group elements) which are retained inH. If there is
not enough space to include the full general position, at least a set
of generators ofH is listed. Thus, the subject of Part 2 issymme-
try. In Part 3, the splitting of the point orbits (Wyckoff positions) of
the space groupG when the symmetry ofG is reduced to that of
H is described. For each Wyckoff position ofG the corresponding
Wyckoff positions ofH are listed. Thus, in Part 3 theimplications
of symmetry changes for crystal structuresare described.

In both Parts 2 and 3, the data are listed in a way that makes
the tables as convenient to use as possible. As the subjects of
Parts 2 and 3 are different, the presentation of the data in the two
parts differs. In addition, the data in Part 2 are such that they can
be used more-or-less independently from Volume A ofInterna-
tional Tables for Crystallography(2002) (abbreviated asIT A).
This independence is not possible for the data in Part 3.

In order to facilitate the combined use of the data in the two
parts, the differences in the presentation of these data are summa-
rized in this Appendix.

A2. Multiple descriptions of the space groupsG andH
In IT A, some space groups are described up to six times:

(i) all monoclinic space groups are referred to unique axisb and
unique axisc; for most of them a further partition is made into
cell choice 1, cell choice 2 and cell choice 3;

(ii) 24 orthorhombic, tetragonal and cubic space groups are
referred to origin choice 1 and origin choice 2;

(iii) seven space groups with rhombohedral lattice are referred to
hexagonal axes and rhombohedral axes.

Multiple descriptions of the space groupG are treated differently
in Parts 2 and 3 of this volume:

(i) In Part 2, the data for each monoclinic space groupG are
listed for unique axisb and unique axisc on separate pages,
but both for cell choice 1 only. In Part 3, the description is
more explicit: for each setting unique axisb or unique axisc
with different cell choices inIT A, the subgroups are listed
for cell choice 1, cell choice 2 and cell choice 3.

(ii) In Part 2, the data for origin choice 1 and origin choice 2 are
listed on separate pages. In Part 3, the data for both origin
choices are combined on the same page.

(iii) In Part 2, descriptions in both hexagonal axes and rhombohe-
dral axes are given; in Part 3 only a description in hexagonal
axes is presented.

Multiple descriptions of the subgroupH are also sometimes
treated differently in the two parts:

(i) The treatment of monoclinic subgroups is broadly the same: if
the subgroup is given in a conventional setting (unique axisb
or unique axisc), then this setting is kept. Otherwise, an non-
conventional setting is transformed to unique axisb. How-
ever, in Part 3 the treatment is more explicit and adapted to the

practice of crystal-structure description: in some cases sev-
eral possible choices of axes transformations are listed for the
same monoclinic subgroup. It is hoped that one of them corre-
sponds to the cell with the commonly preferred metric values.
The different possibilities are indicated by the words ‘or’ or
‘alternative’,e.g.for the monoclinic subgroupP1121/m, No.
11, ofCmcm, No. 63,cf. also Section 3.1.6 (p. 433).

(ii) The treatment of two origin choices is the same with one
exception: if onlyH is listed with two origins inIT A, then
in Part 2 only the data for origin choice 2 are provided, while
in Part 3 the data for both origin choices are listed.

(iii) The treatment of rhombohedral subgroupsH is broadly sim-
ilar. The subgroup is referred to hexagonal axes with two
exceptions:

(a) in Part 2 the setting of the subgroupH is rhombohedral
if the setting ofG is rhombohedral (this does not apply to
Part 3);

(b) in Part 3, for the rhombohedral subgroups of cubic space
groups both settings are given, whereas in Part 2 only the
hexagonal-axes setting is referred to.

A3. The transformation matrix and the origin shift

When starting from a space groupG and proceeding to one of its
subgroupsH < G, the symmetry operations and the point coor-
dinates are primarily referred to the coordinate system ofG. This
coordinate system consists of a coordinate basis of three linearly
independent basis vectors and an origin. In general, the conven-
tional coordinate system ofH will not be identical to that ofG but
the transition from the coordinate system ofG to that ofH may
involve a change of the basis and an origin shift. This transition or
coordinate transformation is not uniquely determined but may be
chosen within certain limits. The optimal choice will be the coor-
dinate transformation that is the most convenient and easy for the
user to work with.

For the following, it is assumed that the original crystal struc-
ture and its space groupG and symmetry operations are referred to
a conventional coordinate system, because the data in the tables of
this volume and inIT A are listed under this condition. Otherwise,
a coordinate transformation to a conventional coordinate system
has to precede the use of most of the data. The coordinate trans-
formation itself is described by the matrixP of the coefficients of
the basis vectors of the new basis referred to the old basis and by
a columnp which consists of the coordinates of the new origin
referred to the old coordinate system,cf. Section 2.1.3 (p. 45) or,
more explicitly, IT A, Part 5. The matrixP is presented in Parts
2 and 3 by listing the new basis vectors as linear combinations of
the old ones,e.g. (a′ =) a − b, (b′ =) a + b, (c′ =) c. The
columnp is presented in Part 2 by listing the coefficients of the
shift vector,e.g.0, 1/2, 1/4. For Part 3, the representatives of the
Wyckoff positions are taken as triplets of point coordinates. The
transformation behaviour of coordinates is different from that of
the symmetry operations,viz x′ = P−1(x − p), wherex andx′ are
the coordinate columns of the points of the crystal structure in the
old and in the new coordinate systems.

The criteria for selecting the coordinate transformations are dif-
ferent in Parts 2 and 3. In Part 2, emphasis is placed on homogene-
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ity by using similar transformation matrices in similar situations.
In Part 3, the preferred transformation is that which avoids an ori-
gin shift, i.e. for which the resulting shift vector is theo vector.

Example.
In the relation

I41/amd(141) → Fddd(70)

the axes must be transformed, either bya − b, a + b, c or
by a + b, −a + b, c. If origin choice 1 is selected for both
space groups, then the first of these transformations requires an
origin shift of 0, 1/2, 1/4 (referred to the coordinate system of
I41/amd). The first transformation is used in Part 2 because in
all such relations the new basis ofH is rotated against the old
basis ofG by a clockwise rotation of 45◦ and the necessary ori-
gin shift is then accepted. No origin shift is needed for the sec-
ond transformation and, therefore, it has been used in Part 3; this
can be seen in the transformation of the coordinates:

(x′ =) 1
2(x + y), (y′ =) 1

2(−x + y), (z′ =) z.

Another difference between Parts 2 and 3 concerns the origin
shifts chosen and their presentation. The common point of view is
to make the origin shift positive unless special conditions lead to a
preference for negative coefficients. However, the shift vectors of
Part 3 is calculated bys = −P−1p from the shift vectorp of Part
2, so the two vectors usually have opposite directions. Therefore,
very often a positive shift vector in Part 2 corresponds to a nega-
tive shift vector in Part 3 andvice versa. This is not obvious at first
glance, because in Part 2 the vectorp is listed, whereas in Part 3
the shift vector is given as part of the coordinate transformations.

Example.
ConsiderPccn, No. 56, as a subgroup ofCccm, No. 66, in the
block ‘Loss of centring translations’. The origin shift 1/4, 1/4, 0
of Part 2 has the opposite direction to that of Part 3, where it is
indicated as part of the transformation ‘x+ 1

4, y+ 1
4, z(+0)’. The

components14, 1
4, 0 of this transformation correspond to a vector

p = (− 1
4,− 1

4 , 0), which is the opposite of the vectorp of Part
2.

Since the Wyckoff letters of the positions inIT A may depend
not only on the chosen basis but also on the chosen origin, a dif-
ference in the origin shift may induce a difference in the relations
between the Wyckoff positions.

Example.
ConsiderP42/m, No. 84, as atranslationengleichesubgroup of
P42/mnm, No. 136. The coordinate transformationx+ 1

2, y, zof
Part 3 results in the relations 2a −→ 2d and 2b −→ 2c of the
Wyckoff positions. The origin shift 0, 1/2, 0 of Part 2 (which
corresponds to a coordinate transformationx,− 1

2 + y, z) results
in the relations 2a −→ 2c and 2b −→ 2d.

A4. Nonconventional settings

If the setting of a subgroup is nonconventional, in Part 2, as in
IT A, an nonconventional Hermann–Mauguin symbol is listed
referred to the basis ofG, followed by the space-group number
and the conventional symbol in parentheses. In Part 3, nonconven-
tional settings are given only by Hermann–Mauguin symbols that
correspond to the conventions of the crystal system followed on
the next line bŷ= and the symbol of the conventional setting.

Examples.
Subgroup entry

in Part 2 in Part 3

Space groupP222, No. 16 A222(21, C222) A222(21)
=̂ C222

Space groupI4122, No. 98 I2112 (22, F222) F222(22)

In Part 3, unlike Part 2, no use is made of centred triclinic cells,F-
andR-centred monoclinic cells,C- andF-centred tetragonal cells
andH-centred hexagonal cells.

A5. The sequence of the subgroups

The sequence of the subgroups follows the same principles in both
parts. Thetranslationengleichesubgroups are listed first, theklas-
sengleichesubgroups follow. The subgroups are distributed into
blocks; within the same block the index generally determines the
sequence (lower index precedes higher index). For the same index,
the space-group number determines the sequence (higher space-
group number precedes lower space-group number). A difference
in the sequence is caused by two special rules that apply to Part 3:

(i) The sequence of thetranslationengleichesubgroups of cubic
space groups does not follow the index value, but is in the
order cubic, rhombohedral, tetragonal, orthorhombic.

(ii) The last translationengleichesubgroup of a tetragonal space
group is always the one with the diagonally oriented cell, irre-
spective of its space-group number.

The sequence of the listings of theklassengleichesubgroups dif-
fers more often, because the partition of the subgroups into blocks
in Part 2 is different from and finer than that in Part 3. The blocks
in Part 2 are determined by the relation of the lattice ofH to that of
G, i.e.by the different kinds of cell enlargement, and the index and
space-group numbers are decisive for the sequence within these
(small) blocks only.

The isomorphic subgroups are placed differently in Parts 2 and
3. Those with index values of 2, 3 and 4 are listed in Part 2 together
with the otherklassengleichesubgroups; they may also be con-
tained in the infinite series of isomorphic subgroups that follow. In
Part 3, all isomorphic subgroups are listed in a separate block.

A6. Conjugate subgroups

Conjugate subgroups are listed in Part 3 only in the case of orienta-
tional conjugation,cf.Section 3.1.5.2 (p. 433). They are marked by
the word ‘conjugate’. In Part 2, all conjugate subgroups of index 3
and 4 are listed individually and are joined by a left brace. In the
series of maximal isomorphic subgroups, the conjugacy relations
are given by statements.
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