International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 12.3, p. 832

Section 12.3.4. Standardization rules for short symbols

H. Burzlaffa and H. Zimmermannb*

a Universität Erlangen–Nürnberg, Robert-Koch-Strasse 4a, D-91080 Uttenreuth, Germany, and bInstitut für Angewandte Physik, Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen–Nürnberg, Bismarckstrasse 10, D-91054 Erlangen, Germany
Correspondence e-mail:  helmuth.zimmermann@krist.uni-erlangen.de

12.3.4. Standardization rules for short symbols

| top | pdf |

The symbols of Bravais lattices and glide planes depend on the choice of basis vectors. As shown in the preceding section, additional translation vectors in centred unit cells produce new symmetry operations with the same rotation but different glide/screw parts. Moreover, it was shown that for diagonal orientations symmetry operations may be represented by different symbols. Thus, different short symbols for the same space group can be derived even if the rules for the selection of the generators and indicators are obeyed.

For the unique designation of a space-group type, a standardization of the short symbol is necessary. Rules for standardization were given first by Hermann (1931)[link] and later in a slightly modified form in IT (1952)[link].

These rules, which are generally followed in the present tables, are given below. Because of the historical development of the symbols (cf. Chapter 12.4[link] ), some of the present symbols do not obey the rules, whereas others depending on the crystal class need additional rules for them to be uniquely determined. These exceptions and additions are not explicitly mentioned, but may be discovered from Table 12.3.4.1[link] in which the short symbols are listed for all space groups. A table for all settings may be found in Chapter 4.3[link] .

Table 12.3.4.1| top | pdf |
Standard space-group symbols

No.Schönflies symbolShubnikov symbolSymbols of International TablesComments
1935 EditionPresent Edition
ShortFullShortFull
1[C_{1}^{1}][(a/b/c)\cdot 1]P1P1P1P1 
2[C_{i}^{1}][(a/b/c)\cdot \overline{2}][P\overline{1}][P\overline{1}][P\overline{1}][P\overline{1}][(a/b/c)\cdot \overline{1}] (Sh–K)
3[C_{2}^{1}][(b\!:\!(c/a))\!:\!2]P2P2P2P121 
  [(c\!:\!(a/b))\!:\!2]   P112 
4[C_{2}^{2}][(b\!:\!(c/a))\!:\!2_{1}][P2_{1}][P2_{1}][P2_{1}][P12_{1}1] 
  [(c\!:\!(a/b))\!:\!2_{1}]   [P112_{1}] 
5[C_{2}^{3}][\left(\displaystyle{a + b \over 2}\bigg/b\!:\!(c/a)\right)\!:\!2]C2C2C2C121B2, B112 (IT, 1952[link])
  [\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(b/a)\right)\!:\!2]   A112[\left(\displaystyle{a + c \over 2}\bigg/c\!:\!(a/b)\right)\!:\!2] (Sh–K)
6[C_{2}^{1}][(b\!:\!(c/a))\cdot m]PmPmPmP1m1 
  [(c\!:\!(a/b))\cdot m]   P11m 
7[C_{s}^{2}][(b\!:\!(c/a))\cdot \tilde{c}]PcPcPcP1c1Pb, P11b (IT, 1952[link])
  [(c\!:\!(b/a))\cdot \tilde{a}]   P11a[(c\!:\!(a/b))\cdot \tilde{b}] (Sh–K)
8[C_{s}^{3}][\left(\displaystyle{a + b \over 2}\bigg/b\!:\!(c/a)\right)\cdot m]CmCmCmC1m1Bm, B11m (IT, 1952[link])
  [\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(b/a)\right)\cdot m]   A11m[\left(\displaystyle{a + c \over 2}\bigg/c\!:\!(a/b)\right)\cdot m] (Sh–K)
9[C_{s}^{4}][\left(\displaystyle{a + b \over 2}\bigg/b\!:\!(c/a)\right)\cdot \tilde{c}]CcCcCcC1c1Bb, B11b (IT, 1952[link])
  [\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(b/a)\right)\cdot \tilde{a}]   A11a[\left(\displaystyle{a + c \over 2}\bigg/c\!:\!(a/b)\right)\cdot \tilde{b}] (Sh–K)
10[C_{2h}^{1}][(b\!:\!(c/a))\cdot m\!:\!2][P2/m][P2/m][P2/m][P1\ {2/m}1] 
  [(c\!:\!(a/b))\cdot m\!:\!2]   [P11\ 2/m] 
11[C_{2h}^{2}][(b\!:\!(c/a))\cdot m\!:\!2_{1}][P2_{1}/m][P2_{1}/m][P2_{1}/m][P1\ 2_{1}/m\ 1] 
  [(c\!:\!(a/b))\cdot m\!:\!2_{1}]   [P11\ 2_{1}/m] 
12[C_{2h}^{3}][\left(\displaystyle{a + b \over 2}\bigg/b\!:\!(c/a)\right)\cdot m\!:\!2][C2/m][C2/m][C2/m][C1\ 2/m\ 1][B2/m, B11\ 2/m] (IT, 1952[link])
  [\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(b/a)\right)\cdot m\!:\!2]   [A11\ 2/m][\left(\displaystyle{a + c \over 2}\bigg/c\!:\!(a/b)\right)\cdot m\!:\!2] (Sh–K)
13[C_{2h}^{4}][(b\!:\!(c/a))\cdot \tilde{c}\!:\!2][P2/c][P2/c][P2/c][P1\ 2/c\ 1][P2/b, P11\ 2/b] (IT, 1952[link])
  [(c\!:\!(a/b))\cdot \tilde{a}\!:\!2]   [P11\ 2/a][(c\!:\!(a/b))\cdot \tilde{b}\!:\!2] (Sh–K)
14[C_{2h}^{5}][(b\!:\!(c/a))\cdot \tilde{c}\!:\!2_{1}][P2_{1}/c][P2_{1}/c][P2_{1}/c][P1\ 2_{1}/c\ 1][P2_{1}/b,P112_{1}/b] (IT, 1952[link])
  [(c\!:\!(a/b))\cdot \tilde{a}\!:\!2_{1}]   [P11\ 2_{1}/a][(c\!:\!(a/b))\cdot b\!:\!2_{1}] (Sh–K)
15[C_{2h}^{6}][\left(\displaystyle{a + b \over 2}\bigg/b\!:\!(c/a)\right)\cdot \tilde{c}\!:\!2][C2/c][C2/c][C2/c][C1\ 2/c\ 1][B2/b, B11\ 2/b] (IT, 1952[link])
  [\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(b/a)\right)\cdot \tilde{a}\!:\!2]   A11 2a[\left(\displaystyle{a + c \over 2}\bigg/c\!:\!(a/b)\right)\cdot \tilde{b}\!:\!2] (Sh–K)
16[D_{2}^{1}][(c\!:\!(a\!:\!b))\!:\!2\!:\!2]P222P222P222P222 
17[D_{2}^{2}][(c\!:\!(a\!:\!b))\!:\!2_{1}\!:\!2][P222_{1}][P222_{1}][P222_{1}][P222_{1}] 
18[D_{2}^{3}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!b))\!:\!2\circcol2_{1}][P2_{1}2_{1}2][P2_{1}2_{1}2][P2_{1}2_{1}2][P2_{1}2_{1}2] 
19[D_{2}^{4}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!b))\!:\!2_{1}\circcol 2_{1}][P2_{1}2_{1}2_{1}][P2_{1}2_{1}2_{1}][P2_{1}2_{1}2_{1}][P2_{1}2_{1}2_{1}] 
20[D_{2}^{5}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!2_{1}\!:\!2][C222_{1}][C222_{1}][C222_{1}][C222_{1}] 
21[D_{2}^{6}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!2\!:\!2]C222C222C222C222 
22[D_{2}^{7}][\left(\displaystyle{a + c \over 2}\bigg/{b + c \over 2}\bigg/{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!2\!:\!2]F222F222F222F222 
23[D_{2}^{8}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!2\!:\!2]I222I222I222I222 
24[D_{2}^{9}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!2\!:\!2_{1}][I2_{1}2_{1}2_{1}][I2_{1}2_{1}2_{1}][I2_{1}2_{1}2_{1}][I2_{1}2_{1}2_{1}] 
25[C_{2v}^{1}][(c\!:\!(a\!:\!b))\!:\!m\cdot 2]PmmPmm2Pmm2Pmm2 
26[C_{2v}^{2}][(c\!:\!(a\!:\!b))\!:\!\tilde{c}\cdot 2_{1}]Pmc[Pmc2_{1}][Pmc2_{1}][Pmc2_{1}] 
27[C_{2v}^{3}][(c\!:\!(a\!:\!b))\!:\!\tilde{c}\cdot 2]PccPcc2Pcc2Pcc2 
28[C_{2v}^{4}][(c\!:\!(a\!:\!b))\!:\!\tilde{a}\cdot 2]PmaPma2Pma2Pma2 
29[C_{2v}^{5}][(c\!:\!(a\!:\!b))\!:\!\tilde{a}\cdot 2_{1}]Pca[Pca2_{1}][Pca2_{1}][Pca2_{1}] 
30[C_{2v}^{6}][(c\!:\!(a\!:\!b))\!:\!\tilde{c} \bigodot 2]PncPnc2Pnc2Pnc2[(c\!:\!(a\!:\!b))\!:\!\widetilde{ac}\cdot 2] (Sh–K)
31[C_{2v}^{7}][(c\!:\!(a\!:\!b))\!:\!\widetilde{ac}\cdot 2_{1}]Pmn[Pmn2_{1}][Pmn2_{1}][Pmn2_{1}] 
32[C_{2v}^{8}][(c\!:\!(a\!:\!b))\!:\!\tilde{a}\bigodot 2]PbaPba2Pba2Pba2 
33[C_{2v}^{9}][(c\!:\!(a\!:\!b))\!:\!\tilde{a}\bigodot 2_{1}]Pna[Pna2_{1}][Pna2_{1}][Pna2_{1}] 
34[C_{2v}^{10}][(c\!:\!(a\!:\!b))\!:\!\widetilde{ac}\bigodot 2]PnnPnn2Pnn2Pnn2 
35[C_{2v}^{11}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!m\cdot 2]CmmCmm2Cmm2Cmm2 
36[C_{2v}^{12}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!\tilde{c}\cdot 2_{1}]Cmc[Cmc2_{1}][Cmc2_{1}][Cmc2_{1}] 
37[C_{2v}^{13}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!\tilde{c}\cdot 2]CccCcc2Ccc2Ccc2 
38[C_{2v}^{14}][\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!m\cdot 2]AmmAmm2Amm2Amm2 
39[C_{2v}^{15}][\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!m\cdot 2_{1}]AbmAbm2Aem2Aem2[\cases{\!\!\left(\displaystyle{b + c \over 2}\!\big/\!c\!:\!(a\!:\!b)\right)\!:\!\tilde{c}\cdot 2\ (\rm{Sh\!-\!K})\cr \hbox{Use former symbol}\cr Abm2\ \hbox{for generation}\cr}]
40[C_{2v}^{16}][\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right.)\!:\!\tilde{a}\cdot 2]AmaAma2Ama2Ama2 
41[C_{2v}^{17}][\left(\displaystyle{b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!\tilde{a}\cdot 2_{1}]AbaAba2Aea2Aea2[\cases{\!\!\left(\displaystyle{b + c \over 2}\!\big/c\!:\!(a\!:\!b)\right)\!:\!\widetilde{ac}\cdot 2 \ (\rm{Sh\!-\!K})\cr \hbox{Use former symbol}\cr Aba2\ \hbox{for generation}\cr}]
42[C_{2v}^{18}][\left(\displaystyle{a + c \over 2}\bigg/{b + c \over 2}\bigg/{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\!:\!m\cdot 2]FmmFmm2Fmm2Fmm2 
43[C_{2v}^{19}][\left(\displaystyle{a + c \over 2}\bigg/{b + c \over 2}\bigg/{a + b \over 2}\!:\!\tilde{c}\!:\!(a\!:\!b)\right):\!{1\over 2}\widetilde{ac}\bigodot 2]FddFdd2Fdd2Fdd2 
44[C_{2v}^{20}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!m\cdot 2]ImmImm2Imm2Imm2 
45[C_{2v}^{21}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!\tilde{c}\cdot 2]IbaIba2Iba2Iba2[\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!\tilde{a}\cdot 2_{1}\ \rm(Sh\!-\!K)]
46[C_{2v}^{22}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\!:\!\tilde{a}\cdot 2]ImaIma2Ima2Ima2 
47[D_{2h}^{1}][(c\!:\!(a\!:\!b))\cdot m\!:\!2\cdot m]Pmmm[P2/m\ 2/m\ 2/m]Pmmm[P2/m\ 2/m\ 2/m] 
48[D_{2h}^{2}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \widetilde{ab}\!:\!2\circdot \widetilde{ac}]Pnnn[P2/n\ 2/n\ 2/n]Pnnn[P2/n\ 2/n\ 2/n] 
49[D_{2h}^{3}][(c\!:\!(a\!:\!b))\cdot m\!:\!2\cdot \tilde{c}]Pccm[P2/c\ 2/c\ 2/m]Pccm[P2/c\ 2/c\ 2/m] 
50[D_{2h}^{4}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \widetilde{ab}\!:\!2\circdot \tilde{a}]Pban[P2/b\ 2/a\ 2/n]Pban[P2/b\ 2/a\ 2/n] 
51[D_{2h}^{5}][(c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2\cdot m]Pmma[P2_{1}/m\ 2/m\ 2/a]Pmma[P2_{1}/m\ 2/m\ 2/a] 
52[D_{2h}^{6}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2\circdot \widetilde{ac}]Pnna[P2/n\ 2_{1}/n\ 2/a]Pnna[P2/n\ 2_{1}/n\ 2/a] 
53[D_{2h}^{7}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2_{1}\cdot \widetilde{ac}]Pmna[P2/m\ 2/n\ 2_{1}/a]Pmna[P2/m\ 2/n\ 2_{1}/a] 
54[D_{2h}^{8}][(c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2\cdot \tilde{c}]Pcca[P2_{1}/c\ 2/c\ 2/a]Pcca[P2_{1}/c\ 2/c\ 2/a] 
55[D_{2h}^{9}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot m\!:\!2\circdot \tilde{a}]Pbam[P2_{1}/b\ 2_{1}/a\ 2/m]Pbam[P2_{1}/b\ 2_{1}/a\ 2/m] 
56[D_{2h}^{10}][(c\!:\!(a\!:\!b))\cdot \widetilde{ab}\!:\!2\cdot \tilde{c}]Pccn[P2_{1}/c\ 2_{1}/c\ 2/n]Pccn[P2_{1}/c\ 2_{1}/c\ 2/n] 
57[D_{2h}^{11}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot m\!:\!2_{1}\circdot \tilde{c}]Pbcm[P2/b\ 2_{1}/c\ 2_{1}/m]Pbcm[P2/b\ 2_{1}/c\ 2_{1}/m] 
58[D_{2h}^{12}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot m\!:\!2\circdot \widetilde{ac}]Pnnm[P2_{1}/n\ 2_{1}/n\ 2/m]Pnnm[P2_{1}/n\ 2_{1}/n\ 2/m] 
59[D_{2h}^{13}][(c\!:\!(a\!:\!b))\cdot \widetilde{ab}\!:\!2\cdot m]Pmmn[P2_{1}/m\ 2_{1}/m\ 2/n]Pmmn[P2_{1}/m\ 2_{1}/m\ 2/n] 
60[D_{2h}^{14}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \widetilde{ab}\!:\!2_{1}\circdot \tilde{c}]Pbcn[P2_{1}/b\ 2/c\ 2_{1}/n]Pbcn[P2_{1}/b\ 2/c\ 2_{1}/n] 
61[D_{2h}^{15}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2_{1}\circdot \tilde{c}]Pbca[P2_{1}/b\ 2_{1}/c\ 2_{1}/a]Pbca[P2_{1}/b\ 2_{1}/c\ 2_{1}/a] 
62[D_{2h}^{16}][\def\circdot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!(a\!:\!b))\cdot \tilde{a}\!:\!2_{1}\circdot m]Pnma[P2_{1}/n\ 2_{1}/m\ 2_{1}/a]Pnma[P2_{1}/n\ 2_{1}/m\ 2_{1}/a] 
63[D_{2h}^{17}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot m\!:\!2_{1}\cdot \tilde{c}]Cmcm[C2/m\ 2/c\ 2_{1}/m]Cmcm[C2/m\ 2/c\ 2_{1}/m] 
64[D_{2h}^{18}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot \tilde{a}\!:\!2_{1}\cdot \tilde{c}]Cmca[C2/m\ 2/c\ 2_{1}/a]Cmce[C2/m\ 2/c\ 2_{1}/e]Use former symbol Cmca for generation
65[D_{2h}^{19}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot m\!:\!2\cdot m]Cmmm[C2/m\ 2/m\ 2/m]Cmmm[C2/m\ 2/m\ 2/m] 
66[D_{2h}^{20}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot m\!:\!2\cdot \tilde{c}]Cccm[C2/c\ 2/c\ 2/m]Cccm[C2/c\ 2/c\ 2/m] 
67[D_{2h}^{21}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot \tilde{a}\!:\!2\cdot m]Cmma[C2/m\ 2/m\ 2/a]Cmme[C2/m\ 2/m\ 2/e]Use former symbol Cmma for generation
68[D_{2h}^{22}][\left(\displaystyle{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\cdot \tilde{a}\!:\!2\cdot \tilde{c}]Ccca[C2/c\ 2/c\ 2/a]Ccce[C2/c\ 2/c\ 2/e]Use former symbol Ccca for generation
69[D_{2h}^{23}][\displaylines{\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\hfill\cr \cdot m\!:\!2\cdot m\hfill\cr}]Fmmm[F2/m\ 2/m\ 2/m]Fmmm[F2/m\ 2/m\ 2/m] 
70[D_{2h}^{24}][\displaylines{\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!c\!:\!(a\!:\!b)\right)\hfill\cr \cdot {\textstyle{1 \over 2}}\widetilde{ab}\!:\!2\bigodot {\textstyle{1 \over 2}}\widetilde{ac}\hfill\cr}]Fddd[F2/d\ 2/d\ 2/d]Fddd[F2/d\ 2/d\ 2/d] 
71[D_{2h}^{25}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\cdot m\!:\!2\cdot m]Immm[I2/m\ 2/m\ 2/m]ImmmI2/m 2/m 2/m 
72[D_{2h}^{26}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\cdot m\!:\!2\cdot \tilde{c}]Ibam[I2/b\ 2/a\ 2/m]Ibam[I2/b\ 2/a\ 2/m] 
73[D_{2h}^{27}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\cdot \tilde{a}\!:\!2\cdot \tilde{c}]Ibca[I2_{1}/b\ 2_{1}/c\ 2_{1}/a]Ibca[I2_{1}/b\ 2_{1}/c\ 2_{1}/a][I2/b\ 2/c\ 2/a] (IT, 1952[link])
74[D_{2h}^{28}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!b)\right)\cdot \tilde{a}\!:\!2\cdot m]Imma[I2_{1}/m\ 2_{1}/m\ 2_{1}/a]Imma[I2_{1}/m\ 2_{1}/m\ 2_{1}/a][I2/m\ 2/m\ 2/a] (IT, 1952[link])
75[C_{4}^{1}][(c\!:\!(a\!:\!a))\!:\!4]P4P4P4P4 
76[C_{4}^{2}][(c\!:\!(a\!:\!a))\!:\!4_{1}][P4_{1}][P4_{1}][P4_{1}][P4_{1}] 
77[C_{4}^{3}][(c\!:\!(a\!:\!a))\!:\!4_{2}][P4_{2}][P4_{2}][P4_{2}][P4_{2}] 
78[C_{4}^{4}][(c\!:\!(a\!:\!a))\!:\!4_{3}][P4_{3}][P4_{3}][P4_{3}][P4_{3}] 
79[C_{4}^{5}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4]I4I4I4I4 
80[C_{4}^{6}][\left(\displaystyle{a - b - c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4_{1}][I4_{1}][I4_{1}][I4_{1}][I4_{1}] 
81[S_{4}^{1}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}][P\overline{4}][P\overline{4}][P\overline{4}][P\overline{4}] 
82[S_{4}^{2}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!\tilde{4}][I\overline{4}][I\overline{4}][I\overline{4}][I\overline{4}] 
83[C_{4h}^{1}][(c\!:\!(a\!:\!a))\cdot m\!:\!4][P4/m][P4/m][P4/m][P4/m] 
84[C_{4h}^{2}][(c\!:\!(a\!:\!a))\cdot m\!:\!4_{2}][P4_{2}/m][P4_{2}/m][P4_{2}/m][P4_{2}/m] 
85[C_{4h}^{3}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4][P4/n][P4/n][P4/n][P4/n] 
86[C_{4h}^{4}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4_{2}][P4_{2}/n][P4_{2}/n][P4_{2}/n][P4_{2}/n] 
87[C_{4h}^{5}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\cdot m\!:\!4][I4/m][I4/m][I4/m][I4/m] 
88[C_{4h}^{6}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\cdot \tilde{a}\!:\!4_{1}][I4_{1}/a][I4_{1}/a][I4_{1}/a][I4_{1}/a] 
89[D_{4}^{1}](c:(a:a)):4:2P42P422P422P422 
90[D_{4}^{2}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!a))\!:\!4 \circcol 2_{1}][P42_{1}][P42_{1}2][P42_{1}2][P42_{1}2] 
91[D_{4}^{3}][(c\!:\!(a\!:\!a))\!:\!4_{1}\!:\!2][P4_{1}2][P4_{1}22][P4_{1}22][P4_{1}22] 
92[D_{4}^{4}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!a))\!:\!4_{1}\circcol 2_{1}][P4_{1}2_{1}][P4_{1}2_{1}2][P4_{1}2_{1}2][P4_{1}2_{1}2] 
93[D_{4}^{5}][(c\!:\!(a\!:\!a))\!:\!4_{2}\!:\!2][P4_{2}2][P4_{2}22][P4_{2}22][P4_{2}22] 
94[D_{4}^{6}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!a))\!:\!4_{2}\circcol 2_{1}][P4_{2}2_{1}][P4_{2}2_{1}2][P4_{2}2_{1}2][P4_{2}2_{1}2] 
95[D_{4}^{7}][(c\!:\!(a\!:\!a))\!:\!4_{3}\!:\!2][P4_{3}2][P4_{3}22][P4_{3}22][P4_{3}22] 
96[D_{4}^{8}][\def\circcol{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!a))\!:\!4_{3}\circcol 2_{1}][P4_{3}2_{1}][P4_{3}2_{1}2][P4_{3}2_{1}2][P4_{3}2_{1}2] 
97[D_{4}^{9}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4\!:\!2]I42I422I422I422 
98[D_{4}^{10}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4_{1}\!:\!2][I4_{1}2][I4_{1}22][I4_{1}22][I4_{1}22] 
99[C_{4v}^{1}][(c\!:\!(a\!:\!a))\!:\!4\cdot m]P4mmP4mmP4mmP4mm 
100[C_{4v}^{2}][ (c\!:\!(a\!:\!a))\!:\!4\bigodot \tilde{a}]P4bmP4bmP4bmP4bm 
101[C_{4v}^{3}][(c\!:\!(a\!:\!a))\!:\!4_{2}\cdot \tilde{c}]P4cm[P4_{2}cm][P4_{2}cm][P4_{2}cm] 
102[C_{4v}^{4}][ (c\!:\!(a\!:\!a))\!:\!4_{2}\bigodot \widetilde{ac}]P4nm[P4_{2}nm][P4_{2}nm][P4_{2}nm] 
103[C_{4v}^{5}][(c\!:\!(a\!:\!a))\!:\!4\cdot \tilde{c}]P4ccP4ccP4ccP4cc 
104[C_{4v}^{6}][ (c\!:\!(a\!:\!a))\!:\!4\bigodot \widetilde{ac}]P4ncP4ncP4ncP4nc 
105[C_{4v}^{7}][(c\!:\!(a\!:\!a))\!:\!4_{2}\cdot m]P4mc[P4_{2}mc][P4_{2}mc][P4_{2}mc] 
106[C_{4v}^{8}][(c\!:\!(a\!:\!a))\!:\!4_{2}\bigodot \tilde{a}]P4bc[P4_{2}bc][P4_{2}bc][P4_{2}bc] 
107[C_{4v}^{9}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4\cdot m]I4mmI4mmI4mmI4mm 
108[C_{4v}^{10}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4\cdot \tilde{c}]I4cmI4cmI4cmI4cm 
109[C_{4v}^{11}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4_{1}\bigodot m]I4md[I4_{1}md][I4_{1}md][I4_{1}md] 
110[C_{4v}^{12}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!4_{1}\bigodot \tilde{c}]I4cd[I4_{1}cd][I4_{1}cd][I4_{1}cd][\left(\displaystyle{a + b + c \over 2}\!\!\bigg/\!\!c\!:\!a\!:\!a\right)\!:\!4_{1}\cdot \tilde{a}\ (\rm{Sh\!-\!K})]
111[D_{2d}^{1}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\!:\!2][P\overline{4}2m][P\overline{4}2m][P\overline{4}2m][P\overline{4}2m] 
112[D_{2d}^{2}][\def\circcol{\mathop{\bigcirc\hskip -5pt{\raise.05pt\hbox{$\!:\!$}} \ }} (c\!:\!(a\!:\!a))\!:\!\tilde{4}\circcol 2][P\overline{4}2c][P\overline{4}2c][P\overline{4}2c][P\overline{4}2c] 
113[D_{2d}^{3}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\cdot \widetilde{ab}][P\overline{4}2_{1}m][P\overline{4}2_{1}m][P\overline{4}2_{1}m][P\overline{4}2_{1}m] 
114[D_{2d}^{4}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\cdot \widetilde{abc}][P\overline{4}2_{1}c][P\overline{4}2_{1}c][P\overline{4}2_{1}c][P\overline{4}2_{1}c] 
115[D_{2d}^{5}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\cdot m][C\overline{4}2m][C\overline{4}2m][P\overline{4}m2][P\overline{4}m2] 
116[D_{2d}^{6}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\cdot \tilde{c}][C\overline{4}2c][C\overline{4}2c][P\overline{4}c2][P\overline{4}c2] 
117[D_{2d}^{7}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\bigodot \tilde{a}][C\overline{4}2b][C\overline{4}2b][P\overline{4}b2][P\overline{4}b2] 
118[D_{2d}^{8}][(c\!:\!(a\!:\!a))\!:\!\tilde{4}\cdot \widetilde{ac}][C\overline{4}2n][C\overline{4}2n][P\overline{4}n2][P\overline{4}n2] 
119[D_{2d}^{9}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!\tilde{4}\cdot m][F\overline{4}2m][F\overline{4}2m][I\overline{4}m2][I\overline{4}m2] 
120[D_{2d}^{10}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!\tilde{4}\cdot \tilde{c}][F\overline{4}2c][F\overline{4}2c][I\overline{4}c2][I\overline{4}c2] 
121[D_{2d}^{11}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!\tilde{4}\!:\!2][I\overline{4}2m][I\overline{4}2m][I\overline{4}2m][I\overline{4}2m] 
122[D_{2d}^{12}][\left(\displaystyle{a + b + c \over 2}\bigg/c\!:\!(a\!:\!a)\right)\!:\!\tilde{4}\bigodot {1 \over 2}\widetilde{abc}][I\overline{4}2d][I\overline{4}2d][I\overline{4}2d][I\overline{4}2d] 
123[D_{4h}^{1}][(c\!:\!(a\!:\!a))\cdot m\!:\!4\cdot m][P4/mmm][P4/m\ 2/m\ 2/m][P4/mmm][P4/m\ 2/m\ 2/m] 
124[D_{4h}^{2}][(c\!:\!(a\!:\!a))\cdot m\!:\!4\cdot \tilde{c}][P4/mcc][P4/m\ 2/c\ 2/c][P4/mcc][P4/m\ 2/c\ 2/c] 
125[D_{4h}^{3}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4\bigodot \tilde{a}][P4/nbm][P4/n\ 2/b\ 2/m][P4/nbm][P4/n\ 2/b\ 2/m][\def\bigodot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!a\!:\!a)\cdot \widetilde{ab}\!:\!4\bigodot \tilde{b}] (Sh–K)
126[D_{4h}^{4}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4\bigodot \widetilde{ac}][P4/nnc][P4/n\ 2/n\ 2/c][P4/nnc][P4/n\ 2/n\ 2/c] 
127[D_{4h}^{5}][(c\!:\!(a\!:\!a))\cdot m\!:\!4\bigodot \tilde{a}][P4/mbm][P4/m\ 2_{1}/b\ 2/m][P4/mbm][P4/m\ 2_{1}/b\ 2/m][\def\bigodot{\mathop{\bigcirc\hskip -6.5pt{\raise.05pt\hbox{$\cdot$}} \ }} (c\!:\!a\!:\!a)\cdot m\!:\!4\bigodot \tilde{b}] (Sh–K)
128[D_{4h}^{6}][(c\!:\!(a\!:\!a))\cdot m\!:\!4\bigodot \widetilde{ac}][P4/mnc][P4/m\ 2_{1}/n\ 2/c][P4/mnc][P4/m\ 2_{1}/n\ 2/c] 
129[D_{4h}^{7}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4\cdot m][P4/nmm][P4/n\ 2_{1}/m\ 2/m][P4/nmm][P4/n\ 2_{1}/m\ 2/m] 
130[D_{4h}^{8}][(c\!:\!(a\!:\!a)\cdot \widetilde{ab}\!:\!4\cdot \tilde{c}][P4/ncc][P4/n\ 2/c\ 2/c][P4/ncc][P4/n\ 2/c\ 2/c] 
131[D_{4h}^{9}][(c\!:\!(a\!:\!a))\cdot m\!:\!4_{2}\cdot m][P4/mmc][P4_{2}/m\ 2/m\ 2/c][P4_{2}/mmc][P4_{2}/m\ 2/m\ 2/c] 
132[D_{4h}^{10}][(c\!:\!(a\!:\!a))\cdot m\!:\!4_{2}\cdot \tilde{c}][P4/mcm][P4_{2}/m\ 2/c\ 2/m][P4_{2}/mcm][P4_{2}/m\ 2/c\ 2/m] 
133[D_{4h}^{11}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4_{2}\bigodot \tilde{a}][P4/nbc][P4_{2}/n\ 2/b\ 2/c][P4_{2}/nbc][P4_{2}/n\ 2/b\ 2/c][(c\!:\!a\!:\!a)\cdot \widetilde{ab}\!:\!4_{2}\bigodot \tilde{b}] (Sh–K)
134[D_{4h}^{12}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4_{2}\bigodot \widetilde{ac}][P4/nnm][P4_{2}/n\ 2/n\ 2/m][P4_{2}/nnm][P4_{2}/n\ 2/n\ 2/m] 
135[D_{4h}^{13}][(c\!:\!(a\!:\!a))\cdot n\!:\!4_{2}\bigodot \tilde{a}][P4/mbc][P4_{2}/m\ 2_{1}/b\ 2/c][P4_{2}/mbc][P4_{2}/m\ 2_{1}/b\ 2/c][(c\!:\!a\!:\!a)\cdot m\!:\!4_{2}\bigodot \tilde{b}] (Sh–K)
136[D_{4h}^{14}][(c\!:\!(a\!:\!a))\cdot m\!:\!4_{2}\bigodot \widetilde{ac}][P4/mnm][P4_{2}/m\ 2_{1}/n\ 2/m][P4_{2}/mnm][P4_{2}/m\ 2_{1}/n\ 2/m] 
137[D_{4h}^{15}][(c\!:\!(a\!:\!a))\cdot \widetilde{ab}\!:\!4_{2}\cdot m][P4/nmc][P4_{2}/n\ 2_{1}/m\ 2/c][P4_{2}/nmc][P4_{2}/n\ 2_{1}/m\ 2/c] 
138[D_{4h}^{16}][(c\!:\!(a\!:\!a))\cdot ab\!:\!4_{2}\cdot \tilde{c}][P4/ncm][P4_{2}/n\ 2_{1}/c\ 2/m][P4_{2}/ncm][P4_{2}/n\ 2_{1}/c\ 2/m] 
139[D_{4h}^{17}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!c\!:\!(a\!:\!a)\right)\cdot m\!:\!4\cdot m][I4/mmm][I4/m\ 2/m\ 2/m][I4/mmm][I4/m\ 2/m\ 2/m] 
140[D_{4h}^{18}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!c\!:\!(a\!:\!a)\right)\cdot m\!:\!4\cdot \tilde{c}][I4/mcm][I4/m\ 2/c\ 2/m][I4/mcm][I4/m\ 2/c\ 2/m] 
141[D_{4h}^{19}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!c\!:\!(a\!:\!a)\right)\cdot \tilde{a}\!:\!4_{1}\bigodot m][I4/amd][I4_{1}/a\ 2/m\ 2/d][I4_{1}/amd][I4_{1}/a\ 2/m\ 2/d] 
142[D_{4h}^{20}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!c\!:\!(a\!:\!a)\right)\cdot \tilde{a}\!:\!4_{1}\bigodot \tilde{c}][I4/acd][I4_{1}/a\ 2/c\ 2/d][I4_{1}/acd][I4_{1}/a\ 2/c\ 2/d] 
143[C_{3}^{1}][(c\!:\!(a/a))\!:\!3]C3C3P3P3 
144[C_{3}^{2}][(c\!:\!(a/a))\!:\!3_{1}][C3_{1}][C3_{1}][P3_{1}][P3_{1}] 
145[C_{3}^{3}][(c\!:\!(a/a))\!:\!3_{2}][C3_{2}][C3_{2}][P3_{2}][P3_{2}] 
146[C_{3}^{4}][\left(\displaystyle{2a + b + c \over 3}\!\!\bigg/\!\!{a + 2b + 2c \over 3}\!\!\bigg/\!\!c\!:\!(a/a)\right)\!:\!3]R3R3R3R3Hexagonal setting (Sh–K)
  [(a/a/a)/3]    Rhombohedral setting (Sh–K)
147[C_{3i}^{1}][(c\!:\!(a/a))\!:\!\tilde{6}][C\overline{3}][C\overline{3}][P\overline{3}][P\overline{3}] 
148[C_{3i}^{2}][\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right)\!:\!\tilde{6}][R\overline{3}][R\overline{3}][R\overline{3}][R\overline{3}]Hexagonal setting (Sh–K)
  [(a/a/a)/\tilde{6}]    Rhombohedral setting (Sh–K)
149[D_{3}^{1}][(c\!:\!(a/a))\!:\!2\!:\!3]H32H321P312P312 
150[D_{3}^{2}][(c\!:\!(a/a))\!:\!2\!:\!3]C32C321P321P321 
151[D_{3}^{3}][(c\!:\!(a/a))\!:\!2\!:\!3_{1}][H3_{1}2][H3_{1}21][P3_{1}12][P3_{1}12] 
152[D_{3}^{4}][(c\!:\!(a/a))\!:\!2\!:\!3_{1}][C3_{1}2][C3_{1}21][P3_{1}21][P3_{1}21] 
153[D_{3}^{5}][(c\!:\!(a/a))\!:\!2\!:\!3_{2}][H3_{2}2][H3_{2}21][P3_{2}12][P3_{2}12] 
154[D_{3}^{6}][(c\!:\!(a/a))\!:\!2\!:\!3_{2}][C3_{2}2][C3_{2}21][P3_{2}21][P3_{2}21] 
155[D_{3}^{7}][\displaylines{\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right)\hfill\cr \cdot 2\!:\!3\hfill\cr}]R32R32R32R32Hexagonal setting (Sh–K)
  [(a/a/a)/3\!:\!2]    Rhombohedral setting (Sh–K)
156[C_{3v}^{1}][(c\!:\!(a/a))\!:\!m\!:\!3]C3mC3mlP3mlP3ml 
157[C_{3v}^{2}][(a\!:\!c\!:\!a)\!:\!m\!:\!3]H3mH3mlP3lmP3lm[\!\matrix{(c\!:\!(a/a))\cdot m\cdot 3 \rm{(Sh\!-\!K)}\hfill\cr\quad\hbox{with special comment}\hfill\cr}]
158[C_{3v}^{3}][(c\!:\!(a/a))\!:\!\tilde{c}\!:\!3]C3cC3clP3clP3cl 
159[C_{3v}^{4}][(a\!:\!c\!:\!a)\!:\!\tilde{c}\!:\!3]H3cH3clP3lcP3lc[\!\matrix{(c\!:\!(a/a))\cdot \tilde{c}\cdot 3 \rm{(Sh\!-\!K)}\hfill\cr \quad\hbox{with special comment}\hfill\cr}]
160[C_{3v}^{5}][\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right) \cdot m\cdot 3]R3mR3mR3mR3mHexagonal setting (Sh–K)
  [(a/a/a)/3\cdot m]    Rhombohedral setting (Sh–K)
161[C_{3v}^{6}][\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right) \cdot \tilde{c}\cdot 3]R3cR3cR3cR3cHexagonal setting (Sh–K)
  [(a/a/a)/3\cdot \widetilde{abc}]    Rhombohedral setting (Sh–K)
162[D_{3d}^{1}][(a\!:\!c\!:\!a)\cdot m\cdot \tilde{6}][H\overline{3}m][H\overline{3}\ 2/m\ 1][P\overline{3}1m][P\overline{3}1\ 2/m][(c\!:\!(a/a))\cdot m\cdot \tilde{6}] (Sh–K) with special comment
163[D_{3d}^{2}][(a\!:\!c\!:\!a)\cdot \tilde{c}\cdot \tilde{6}][H\overline{3}c][H\overline{3}\ 2/c\ 1][P\overline{3}1c][P\overline{3}1\ 2/c][(c\!:\!(a/a)\cdot \tilde{c}\cdot \tilde{6}] (Sh–K) with special comment
164[D_{3d}^{3}][(c\!:\!(a/a))\!:\!m\cdot \tilde{6}][C\overline{3}m][C\overline{3}\ 2/m\ 1][P\overline{3}m1][P\overline{3}\ 2/m\ 1] 
165[D_{3d}^{4}][(c\!:\!(a/a))\!:\!\tilde{c}\cdot \tilde{6}][C\overline{3}c][C\overline{3}\ 2/c\ 1][P\overline{3}c1][P\overline{3}\ 2/c\ 1] 
166[D_{3d}^{5}][\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right) :\!m\cdot \tilde{6}][R\overline{3}m][R\overline{3}\ 2/m][R\overline{3}m][R\overline{3}\ 2/m]Hexagonal setting (Sh–K)
  [(a/a/a)/\tilde{6}\cdot m]    Rhombohedral setting (Sh–K)
167[D_{3d}^{6}][\left(\displaystyle{2a + b + c \over 3}\!\bigg/\!{a + 2b + 2c \over 3}\!\bigg/\!c\!:\!(a/a)\right):\!\tilde{c}\cdot \tilde{6}][R\overline{3}c][R\overline{3}\ 2/c][R\overline{3}c][R\overline{3}\ 2/c]Hexagonal setting (Sh–K)
  [(a/a/a)/\tilde{6}\cdot \widetilde{abc}]    Rhombohedral setting (Sh–K)
168[C_{6}^{1}][(c\!:\!(a/a))\!:\!6]C6C6P6P6 
169[C_{6}^{2}][(c\!:\!(a/a))\!:\!6_{1}][C6_{1}][C6_{1}][P6_{1}][P6_{1}] 
170[C_{6}^{3}][(c\!:\!(a/a))\!:\!6_{5}][C6_{5}][C6_{5}][P6_{5}][P6_{5}] 
171[C_{6}^{4}][(c\!:\!(a/a))\!:\!6_{2}][C6_{2}][C6_{2}][P6_{2}][P6_{2}] 
172[C_{6}^{5}][(c\!:\!(a/a))\!:\!6_{4}][C6_{4}][C6_{4}][P6_{4}][P6_{4}] 
173[C_{6}^{6}][(c\!:\!(a/a))\!:\!6_{3}][C6_{3}][C6_{3}][P6_{3}][P6_{3}] 
174[C_{3h}^{1}][(c\!:\!(a/a))\!:\!3\!:\!m][C\overline{6}][C\overline{6}][P\overline{6}][P\overline{6}] 
175[C_{6h}^{1}][(c\!:\!(a/a))\cdot m\!:\!6][C6/m][C6/m][P6/m][P6/m] 
176[C_{6h}^{2}][(c\!:\!(a/a))\cdot m\!:\!6_{3}][C6_{3}/m][C6_{3}/m][P6_{3}/m][P6_{3}/m] 
177[D_{6}^{1}][(c\!:\!(a/a))\cdot 2\!:\!6]C62C622P622P622 
178[D_{6}^{2}][(c\!:\!(a/a))\cdot 2\!:\!6_{1}][C6_{1}2][C6_{1}22][P6_{1}22][P6_{1}22] 
179[D_{6}^{3}][(c\!:\!(a/a))\cdot 2\!:\!6_{5}][C6_{5}2][C6_{5}22][P6_{5}22][P6_{5}22] 
180[D_{6}^{4}][(c\!:\!(a/a))\cdot 2\!:\!6_{2}][C6_{2}2][C6_{2}22][P6_{2}22][P6_{2}22] 
181[D_{6}^{5}][(c\!:\!(a/a))\cdot 2\!:\!6_{4}][C6_{4}2][C6_{4}22][P6_{4}22][P6_{4}22] 
182[D_{6}^{6}][(c\!:\!(a/a))\cdot 2\!:\!6_{3}][C6_{3}2][C6_{3}22][P6_{3}22][P6_{3}22] 
183[C_{6v}^{1}][(c\!:\!(a/a))\!:\!m\cdot 6]C6mmC6mmP6mmP6mm 
184[C_{6v}^{2}][(c\!:\!(a/a))\!:\!\tilde{c}\cdot 6]C6ccC6ccP6ccP6cc 
185[C_{6v}^{3}][(c\!:\!(a/a))\!:\!\tilde{c}\cdot 6_{3}]C6cm[C6_{3}cm][P6_{3}cm][P6_{3}cm] 
186[C_{6v}^{4}][(c\!:\!(a/a))\!:\!m\cdot 6_{3}]C6mc[C6_{3}mc][P6_{3}mc][P6_{3}mc] 
187[D_{3h}^{1}][(c\!:\!(a/a))\!:\!m\cdot 3\!:\!m][C\overline{6}m2][C\overline{6}m2][P\overline{6}m2][P\overline{6}m2] 
188[D_{3h}^{2}][(c\!:\!(a/a))\!:\!\tilde{c}\cdot 3\!:\!m][C\overline{6}c2][C\overline{6}c2][P\overline{6}c2][P\overline{6}c2] 
189[D_{3h}^{3}][(c\!:\!(a/a))\cdot m\!:\!3\cdot m][H\overline{6}m2][H\overline{6}m2][P\overline{6}2m][P\overline{6}2m] 
190[D_{3h}^{4}][(c\!:\!(a/a))\cdot m\!:\!3\cdot \tilde{c}][H\overline{6}c2][H\overline{6}c2][P\overline{6}2c][P\overline{6}2c] 
191[D_{6h}^{1}][(c\!:\!(a/a))\cdot m\!:\!6\cdot m][C6/mmm][C6/m\ 2/m\ 2/m][P6/mmm][P6/m\ 2/m\ 2/m] 
192[D_{6h}^{2}][(c\!:\!(a/a))\cdot m\!:\!6\cdot \tilde{c}][C6/mcc][C6/m\ 2/c\ 2/c][P6/mcc][P6/m\ 2/c\ 2/c] 
193[D_{6h}^{3}][(c\!:\!(a/a))\cdot m\!:\!6_{3}\cdot \tilde{c}][C6/mcm][C6_{3}/m\ 2/c\ 2/m][P6_{3}/mcm][P6_{3}/m\ 2/c\ 2/m] 
194[D_{6h}^{4}][(c\!:\!(a/a))\cdot m\!:\!6_{3}\cdot m][C6/mmc][C6_{3}/m\ 2/m\ 2/c][P6_{3}/mmc][P6_{3}/m\ 2/m\ 2/c] 
195[T^{1}][(a\!:\!(a/a))\!:\!2/3]P23P23P23P23 
196[T^{2}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right)\!:\!2/3]F23F23F23F23 
197[T^{3}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!2/3]I23I23I23I23 
198[T^{4}][(a\!:\!(a\!:\!a))\!:\!2_{1}//3][P2_{1}3][P2_{1}3][P2_{1}3][P2_{1}3] 
199[T^{5}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!2_{1}//3][I2_{1}3][I2_{1}3][I2_{1}3][I2_{1}3] 
200[T_{h}^{1}][(a\!:\!(a\!:\!a))\cdot m/\tilde{6}]Pm3[P2/m\ \overline{3}][Pm\overline{3}][P2/m\ \overline{3}]Pm3 (IT, 1952[link])
201[T_{h}^{2}][(a\!:\!(a\!:\!a))\cdot \widetilde{ab}/\tilde{6}]Pn3[P2/n\ \overline{3}][Pn\overline{3}][P2/n\ \overline{3}]Pn3 (IT, 1952[link])
202[T_{h}^{3}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right)\cdot m/\tilde{6}]Fm3[F2/m\ \overline{3}][Fm\overline{3}][F2/m\ \overline{3}]Fm3 (IT, 1952[link])
203[T_{h}^{4}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right) \cdot {1 \over 2}ab/\tilde{6}]Fd3[F2/d\ \overline{3}][Fd\overline{3}][F2/d\ \overline{3}]Fd3 (IT, 1952[link])
204[T_{h}^{5}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\cdot m/\tilde{6}]Im3[I2/m\ \overline{3}][Im\overline{3}][I2/m\ \overline{3}]Im3 (IT, 1952[link])
205[T_{h}^{6}][(a\!:\!(a\!:\!a))\cdot \tilde{a}/\tilde{6}]Pa3[P2_{1}/a\ \overline{3}][Pa\overline{3}][P2_{1}/a\ \overline{3}]Pa3 (IT, 1952[link])
206[T_{h}^{7}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\cdot \tilde{a}/\tilde{6}]Ia3[I2_{1}/a\ \overline{3}][Ia\overline{3}][I2_{1}/a\ \overline{3}]Ia3 (IT, 1952[link])
207[O^{1}][(a\!:\!(a\!:\!a))\!:\!4/3]P43P432P432P432 
208[O^{2}][(a\!:\!(a\!:\!a))\!:\!4_{2}//3][P4_{2}3][P4_{2}32][P4_{2}32][P4_{2}32] 
209[O^{3}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right)\!:\!4/3]F43F432F432F432 
210[O^{4}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right) \!:\!4_{1}//3][F4_{1}3][F4_{1}32][F4_{1}32][F4_{1}32] 
211[O^{5}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!4/3]I43I432I432I432 
212[O^{6}][(a\!:\!(a\!:\!a))\!:\!4_{3}//3][P4_{3}3][P4_{3}32][P4_{3}32][P4_{3}32] 
213[O^{7}][(a\!:\!(a\!:\!a))\!:\!4_{1}//3][P4_{1}3][P4_{1}32][P4_{1}32][P4_{1}32] 
214[O^{8}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!4_{1}//3][I4_{1}3][I4_{1}32][I4_{1}32][I4_{1}32] 
215[T_{d}^{1}][(a\!:\!(a\!:\!a))\!:\!\tilde{4}/3][P\overline{4}3m][P\overline{4}3m][P\overline{4}3m][P\overline{4}3m] 
216[T_{d}^{2}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right)\!:\!\tilde{4}/3][F\overline{4}3m][F\overline{4}3m][F\overline{4}3m][F\overline{4}3m] 
217[T_{d}^{3}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right) \!:\!\tilde{4}/3][I\overline{4}3m][I\overline{4}3m][I\overline{4}3m][I\overline{4}3m] 
218[T_{d}^{4}][(a\!:\!(a\!:\!a))\!:\!\tilde{4}//3][P\overline{4}3n][P\overline{4}3n][P\overline{4}3n][P\overline{4}3n] 
219[T_{d}^{5}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right)\!:\!\tilde{4}//3][F\overline{4}3c][F\overline{4}3c][F\overline{4}3c][F\overline{4}3c] 
220[T_{d}^{6}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!\tilde{4}//3][I\overline{4}3d][I\overline{4}3d][I\overline{4}3d][I\overline{4}3d] 
221[O_{h}^{1}][(a\!:\!(a\!:\!a))\!:\!4/\tilde{6}\cdot m]Pm3m[P4/m\ \overline{3}\ 2/m][Pm\overline{3}m][P4/m\ \overline{3}\ 2/m]Pm3m (IT, 1952[link])
222[O_{h}^{2}][(a\!:\!(a\!:\!a))\!:\!4/\tilde{6}\cdot \widetilde{abc}]Pn3n[P4/n\ \overline{3}\ 2/n][Pn\overline{3}n][P4/n\ \overline{3}\ 2/n]Pn3n (IT, 1952[link])
223[O_{h}^{3}][(a\!:\!(a\!:\!a))\!:\!4_{2}//\tilde{6}\cdot \widetilde{abc}]Pm3n[P4_{2}/m\ \overline{3}\ 2/n][Pm\overline{3}n][P4_{2}/m\ \overline{3}\ 2/n]Pm3n (IT, 1952[link])
224[O_{h}^{4}][(a\!:\!(a\!:\!a))\!:\!4_{2}//\tilde{6}\cdot m]Pn3m[P4_{2}/n\ \overline{3}\ 2/m][Pn\overline{3}m][P4_{2}/n\ \overline{3}\ 2/m]Pn3m (IT ,1952[link])
225[O_{h}^{5}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right) \!:\!4/\tilde{6}\cdot m]Fm3m[F4/m\ \overline{3}\ 2/m][Fm\overline{3}m][F4/m\ \overline{3}\ 2/m]Fm3m (IT, 1952[link])
226[O_{h}^{6}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right) \!:\!4/\tilde{6}\cdot \tilde{c}]Fm3c[F4/m\ \overline{3}\ 2/c][Fm\overline{3}c][F4/m\ \overline{3}\ 2/c]Fm3c (IT, 1952[link])
227[O_{h}^{7}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a(a\!:\!a)\right):\!4_{1}//\tilde{6}\cdot m]Fd3m[F4_{1}/d\ \overline{3}\ 2/m][Fd\overline{3}m][F4_{1}/d\ \overline{3}\ 2/m]Fd3m (IT, 1952[link])
228[O_{h}^{8}][\left(\displaystyle{a + c \over 2}\!\bigg/\!{b + c \over 2}\!\bigg/\!{a + b \over 2}\!:\!a\!:\!(a\!:\!a)\right):\!4_{1}//\tilde{6}\cdot \tilde{c}]Fd3c[F4_{1}/d\ \overline{3}\ 2/c][Fd\overline{3}c][F4_{1}/d\ \overline{3}\ 2/c]Fd3c (IT, 1952[link])
229[O_{h}^{9}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!4/\tilde{6}\cdot m]Im3m[I4/m\ \overline{3}\ 2/m][Im\overline{3}m][I4/m\ \overline{3}\ 2/m]Im3m (IT, 1952[link])
230[O_{h}^{10}][\left(\displaystyle{a + b + c \over 2}\!\bigg/\!a\!:\!(a\!:\!a)\right)\!:\!4_{1}//\tilde{6}\cdot {1 \over 2}\widetilde{abc}]Ia3d[I4_{1}/a\ \overline{3}\ 2/d][Ia\overline{3}d][I4_{1}/a\ \overline{3}\ 2/d]Ia3d (IT, 1952[link])
Abbreviations used in the column Comments: IT, 1952: International Tables for X-ray Crystallography, Vol. 1 (1952)[link]; Sh–K; Shubnikov & Koptsik (1972)[link]. Note that this table contains only one notation for the b-unique setting and one notation for the c-unique setting in the monoclinic case, always referring to cell choice 1 of the space-group tables.

Triclinic symbols are unique if the unit cell is primitive. For the standard setting of monoclinic space groups, the lattice symmetry direction is labelled b. From the three possible centrings A, I and C, the latter one is favoured. If glide components occur in the plane perpendicular to [010], the glide direction c is preferred. In the space groups corresponding to the orthorhombic group mm2, the unique direction of the twofold axis is chosen along c. Accordingly, the face centring C is employed for centrings perpendicular to the privileged direction. For space groups with possible A or B centring, the first one is preferred. For groups 222 and mmm, no privileged symmetry direction exists, so the different possibilities of one-face centring can be reduced to C centring by change of the setting. The choices of unit cell and centring type are fixed by the conventional basis in systems with higher symmetry.

When more than one kind of symmetry elements exist in one representative direction, in most cases the choice for the space-group symbol is made in order of decreasing priority: for reflections and glide reflections m, a, b, c, n, d, for proper rotations and screw rotations [6,\ 6_{1},\ 6_{2},\ 6_{3},\ 6_{4},\ 6_{5}]; [4,\ 4_{1},\ 4_{2},\ 4_{3}]; [3,\ 3_{1},\ 3_{2}]; [2,\ 2_{1}] [cf. IT (1952)[link], p. 55, and Chapter 4.1[link] ].

References

First citation International Tables for X-ray Crystallography (1952). Vol. I, edited by N. F. M. Henry & K. Lonsdale. Birmingham: Kynoch Press. [Revised editions: 1965, 1969 and 1977. Abbreviated as IT (1952).]Google Scholar
First citation Hermann, C. (1931). Bemerkungen zu der vorstehenden Arbeit von Ch. Mauguin. Z. Kristallogr. 76, 559–561.Google Scholar








































to end of page
to top of page