International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 14.2, pp. 848-872
https://doi.org/10.1107/97809553602060000531

Chapter 14.2. Symbols and properties of lattice complexes

W. Fischera and E. Kocha*

a Institut für Mineralogie, Petrologie und Kristallographie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail:  kochelke@mailer.uni-marburg.de

The reference symbols of lattice complexes are described and the terms `degrees of freedom' of a lattice complex, `limiting complex', `comprehensive complex' and `Weissenberg complex' are defined and illustrated by examples. Then the descriptive symbols of lattice complexes are introduced, their properties are described and their interpretation is demonstrated by numerous examples. Tables 14.2.3.1[link] and 14.2.3.2[link] give the explicit assignment of the Wyckoff positions of all plane groups and space groups, respectively, to Wyckoff sets and to lattice complexes. For each Wyckoff position, the reference symbol of the corresponding lattice complex is tabulated. In addition, a descriptive symbol is given that describes the arrangement of points in the corresponding point configurations. It refers directly to the coordinate description of the Wyckoff position.

Keywords: lattice complexes; Wyckoff positions; Wyckoff sets; degrees of freedom; limiting lattice complexes; comprehensive lattice complexes; Weissenberg complexes; invariant lattice complexes.

14.2.1. Reference symbols and characteristic Wyckoff positions

| top | pdf |

If a lattice complex can be generated in different space-group types, one of them stands out because its corresponding Wyckoff positions show the highest site symmetry. This is called the characteristic space-group type of the lattice complex. The space groups of all the other types in which the lattice complex may be generated are subgroups of the space groups of the characteristic type.

Different lattice complexes may have the same characteristic space-group type but in that case they differ in the oriented site symmetry of their Wyckoff positions within the space groups of that type.

The characteristic space-group type and the corresponding oriented site symmetry express the common symmetry properties of all point configurations of a lattice complex. Therefore, they can be used to identify each lattice complex. Within the reference symbols of lattice complexes, however, instead of the site symmetry the Wyckoff letter of one of the Wyckoff positions with that site symmetry is given, as was first done by Hermann (1935)[link]. This Wyckoff position is called the characteristic Wyckoff position of the lattice complex.

Examples

  • (1) [Pm\bar{3}m] is the characteristic space-group type for the lattice complex of all cubic primitive point lattices. The Wyckoff positions with the highest possible site symmetry [m\bar{3}m] are la 000 and 1b [{\textstyle{1 \over 2} {1 \over 2} {1 \over 2}}], from which 1a has been chosen as the characteristic position. Thus, the lattice complex is designated [Pm\bar{3}m\ a].

  • (2) [Pm\bar{3}m] is also characteristic for another lattice complex that corresponds to Wyckoff position 8g xxx .3m. Thus, the reference symbol for this lattice complex is [Pm\bar{3}m\ g]. Each of its point configurations may be derived by replacing each point of a cubic primitive lattice by eight points arranged at the corners of a cube.

In Tables 14.2.3.1[link] and 14.2.3.2[link], the reference symbols denote the lattice complex of each Wyckoff position. The reference symbols of characteristic Wyckoff positions are marked by asterisks (e.g. 2e in [P2/c]). If in a particular space group several Wyckoff positions belong to the same Wyckoff set (cf. Koch & Fischer, 1975[link]), the reference symbol is given only once (e.g. Wyckoff positions 4l to 4o in [P4/mmm]). To enable this, the usual sequence of Wyckoff positions had to be changed in a few cases (e.g. in [P4_{2}/mcm]). For Wyckoff positions assigned to the same lattice complex but belonging to different Wyckoff sets, the reference symbol is repeated. In [I4/m], for example, Wyckoff positions 4c and 4d are both assigned to the lattice complex [P4/mmm\ a]. They do not belong, however, to the same Wyckoff set because the site-symmetry groups [2/m].. of 4c and [\bar{4}].. of 4d are different.

Table 14.2.3.1| top | pdf |
Plane groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets are marked by asterisks.

1 p1
1a1 p2 aP[xy]
      
2 p2
1a2*[p2\ a]P
1b   [0{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2e1*[p2\ e]P2xy
      
3 pm
1a.m. p2mm aP[y]
1b   [{\textstyle{1 \over 2}}0\ P\hbox{[}y\hbox{]}]
2c1 p2mm eP2x[y]
      
4 pg
2a1 p2mg c[2..\ P_{b}C1x\hbox{[}y\hbox{]}]
      
5 cm
2a.m. c2mm aC[y]
4b1 c2mm dC2x[y]
      
6 p2mm
1a2mm*[p2mm\ a]P
1b   [0{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2e..m*[p2mm\ e]P2x
2f   [0{\textstyle{1 \over 2}}\ P2x]
2g.m.  P2y
2h   [{\textstyle{1 \over 2}}0\ P2y]
4i1*[p2mm\ i]P2x2y
      
7 p2mg
2a2.. p2mm a[P_{a}]
2b   [0{\textstyle{1 \over 2}}\ P_{a}]
2c.m.*[p2mg\ c][{\textstyle{1 \over 4}}0\ 2..\ P_{a}C1y]
4d1*[p2mg\ d][.m.\ P_{a}2xy]
      
8 p2gg
2a2.. c2mm aC
2b   [{\textstyle{1 \over 2}}0\ C]
4c1*[p2gg\ c].g. C2xy
      
9 c2mm
2a2mm*[c2mm\ a]C
2b   [0{\textstyle{1 \over 2}}\ C]
4c2.. p2mm a[{\textstyle{1 \over 4}{1 \over 4}}\ P_{ab}]
4d..m*[c2mm\ d]C2x
4e.m.  C2y
8f1*[c2mm\ f]C2x2y
      
10 p4
1a4.. p4mm aP
1b   [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2c2.. p4mm a[0{\textstyle{1 \over 2}}\ C]
4d1*[p4\ d]P4xy
      
11 p4mm
1a4mm*[p4mm\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2c2mm. p4mm a[0{\textstyle{1 \over 2}}\ C]
4d.m.*[p4mm\ d]P4x
4e   [{\textstyle{1 \over 2}{1 \over 2}}\ P4x]
4f..m*[p4mm\ f]P4xx
8g1*[p4mm\ g]P4x2y
      
12 p4gm
2a4.. p4mm aC
2b2.mm p4mm a[0{\textstyle{1 \over 2}}\ C]
4c..m*[p4gm\ c][0{\textstyle{1 \over 2}}\ .g.\ C2xx]
8d1*[p4gm\ d]..m C4xy
      
13 p3
1a3.. p6mm aP
1b   [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1c   [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3d1*[p3\ d]P3xy
      
14 p3m1
1a3m. p6mm aP
1b   [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1c   [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3d.m.*[p3m1\ d][P3x\bar{x}]
6e1*[p3m1\ e][P3x\bar{x}2y]
      
15 p31m
1a3.m p6mm aP
2b3.. p6mm bG
3c..m*[p31m\ c]P3x
6d1*[p31m\ d]P3x2y
      
16 p6
1a6.. p6mm aP
2b3.. p6mm bG
3c2.. p6mm cN
6d1*[p6\ d]P6xy
      
17 p6mm
1a6mm*[p6mm\ a]P
2b3m.*[p6mm\ b]G
3c2mm*[p6mm\ c]N
6d..m*[p6mm\ d]P6x
6e.m.*[p6mm\ e][P6x\bar{x}]
12f1*[p6mm\ f]P6x2y

Table 14.2.3.2| top | pdf |
Space groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets are marked by asterisks.

1 P1
1a1 [P\bar{1}\ a]P[xyz]
      
2 [{\bi P}\bar{\bf 1}]
1a[\bar{1}] [ P\bar{1}\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [0{\textstyle{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}}00\ P]
1e   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1g   [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2i1*[P\bar{1}\ i]P2xyz
      
3 P2
1a2 [P2/m\ a]P[y]
1b   [00{\textstyle{1 \over 2}}\ P\hbox{[}y\hbox{]}]
1c   [{\textstyle{1 \over 2}}00\ P\hbox{[}y\hbox{]}]
1d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P\hbox{[}y\hbox{]}]
2e1 [P2/m\ m]P2xz[y]
      
4 [{\bi P}{\bf 2}_{\bf 1}]
2a1 [P2_{1}/m\ e][2_{1}\ P_{b}ACI1xz\hbox{[}y\hbox{]}]
      
5 C2
2a2 [C2/m\ a]C[y]
2b   [00{\textstyle{1 \over 2}}\ C\hbox{[}y\hbox{]}]
4c1 [C2/m\ i]C2xz[y]
      
6 Pm
1am [P2/m\ a]P[xz]
1b   [0{\textstyle{1 \over 2}}0\ P{\hbox{[}xz\hbox{]}}]
2c1 [P2/m\ i]P2y[xz]
      
7 Pc
2a1 [P2/c\ e][c\ P_{c}A1y\hbox{[}xz\hbox{]}]
      
8 Cm
2am [C2/m\ a]C[xz]
4b1 [C2/m\ g]C2y[xz]
      
9 Cc
4a1 [C2/c\ e][\bar{1}\ C_{c}F1y\hbox{[}xz\hbox{]}]
      
10 [{\bi P}{\bf 2}/{\bi m}]
1[a][2/m]*[ P2/m\ a]P
1b   [0{\textstyle{1 \over 2}}0\ P]
1c   [00{\textstyle{1 \over 2}}\ P]
1d   [{\textstyle{1 \over 2}}00\ P]
1e   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1f   [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1g   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2i2*[ P2/m\ i]P2y
2j   [{\textstyle{1 \over 2}}00\ P2y]
2k   [00{\textstyle{1 \over 2}}\ P2y]
2l   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2mm*[ P2/m\ m]P2xz
2n   [0{\textstyle{1 \over 2}}0\ P2xz]
4o1*[P2/m\ o]P2xz2y
      
11 [{\bi P}{\bf 2}_{\bf 1}/{\bi m}]
2a[\bar{1}] [P2/m\ a][P_{b}]
2b   [{\textstyle{1 \over 2}}00\ P_{b}]
2c   [00{\textstyle{1 \over 2}}\ P_{b}]
2d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P_{b}]
2em*[ P2_{1}/m\ e][0{1 \over 4}0\ 2_{1}P_{b}ACI1xz]
4f1*[ P2_{1}/m\ f][m\ P_{b}2xyz]
      
12 [{\bi C}{\bf 2}/{\bi m}]
2a[2/m]*[ C2/m\ a]C
2b   [0{\textstyle{1 \over 2}}0\ C]
2c   [00{\textstyle{1 \over 2}}\ C]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4e[\bar{1}] [P2/m\ a][{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4f   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4g2*[ C2/m\ g]C2y
4h   [00{\textstyle{1 \over 2}}\ C2y]
4im*[C2/m\ i]C2xz
8j1*[C2/m\ j]C2xz2y
      
13 [{\bi P}{\bf 2}/{\bi c}]
2a[\bar{1}] [P2/m\ a][P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2c   [0{\textstyle{1 \over 2}}0\ P_{c}]
2d   [{\textstyle{1 \over 2}}00\ P_{c}]
2e2*[ P2/c\ e][00{\textstyle{1 \over 4}}\ c\ P_{c}A1y]
2f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ c\ P_{c}A1y]
4g1*[ P2/c\ g][2\ P_{c}2xyz]
      
14 [{\bi P}{\bf 2}_{\bf 1}/{\bi c}]
2a[\bar{1}] [C2/m\ a]A
2b   [{\textstyle{1 \over 2}}00\ A]
2c   [00{\textstyle{1 \over 2}}\ A]
2d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ A]
4e1*[ P2_{1}/c\ e]c A2xyz
      
15 [{\bi C}{\bf 2}/{\bi c}]
4a[\bar{1}] [C2/m\ a][C_{c}]
4b   [0{\textstyle{1 \over 2}}0\ C_{c}]
4c   [{\textstyle{1 \over 4}{1 \over 4}}0\ F]
4d   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ F]
4e2*[C2/c\ e][00{\textstyle{1 \over 4}}\ \bar{1}\ C_{c}F1y]
8f1*[ C2/c\ f][2_{1}\ C_{c}2xyz]
      
16 P222
1a222 Pmmm aP
1b   [{\textstyle{1 \over 2}}00\ P]
1c   [0{\textstyle{1 \over 2}}0\ P]
1d   [00{\textstyle{1 \over 2}}\ P]
1e   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1g   [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2i2.. Pmmm iP2x
2j   [00{\textstyle{1 \over 2}}\ P2x]
2k   [0{\textstyle{1 \over 2}}0\ P2x]
2l   [0{\textstyle{1 \over 2}{1 \over 2}}\ P2x]
2m.2.  P2y
2n   [00{\textstyle{1 \over 2}}\ P2y]
2o   [{\textstyle{1 \over 2}}00\ P2y]
2p   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2q..2  P2z
2r   [{\textstyle{1 \over 2}}00\ P2z]
2s   [0{\textstyle{1 \over 2}}0\ P2z]
2t   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4u1*[ P222\ u]P2x2yz
      
17 [{\bi P}{\bf 222}_{\bf 1}]
2a2.. Pmma e[.2.\ P_{c}B1x]
2b   [0{\textstyle{1 \over 2}}0\ .2.\ P_{c}B1x]
2c.2.  [00{\textstyle{1 \over 4}}\ 2..\ P_{c}A1y]
2d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ 2..\ P_{c}A1y]
4e1*[ P222_{1}\ e][.2.\ P_{c}B1x2yz]
      
18[ {\bi P}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}]    
2a..2 Pmmn a[2_{1}..\ CI1z]
2b   [0{\textstyle{1 \over 2}}0\ 2_{1}..\ CI1z]
4c1*[P2_{1}2_{1}2\ c][2_{1}..\ CI1z2xy]
      
19 [{\bi P}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}]
4a1*[P2_{1}2_{1}2_{1}\ a][2_{1}2_{1}.\ FA_{a}B_{b}C_{c}I_{a}I_{b}I_{c}1xyz]
      
20 [{\bi C}{\bf 222}_{\bf 1}]
4a2.. Cmcm c[.2_{1}.\ C_{c}F1x]
4b.2.  [00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8c1*[ C222_{1}\ c][.2_{1}.\ C_{c}F1x2yz]
      
21 C222
2a222 Cmmm aC
2b   [0{\textstyle{1 \over 2}}0\ C]
2c   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2d   [00{\textstyle{1 \over 2}}\ C]
4e2.. Cmmm gC2x
4f   [00{\textstyle{1 \over 2}}\ C2x]
4g.2.  C2y
4h   [00{\textstyle{1 \over 2}}\ C2y]
4i..2 Cmmm kC2z
4j   [0{\textstyle{1 \over 2}}0\ C2z]
4k..2 Cmme g[{\textstyle{1 \over 4}{1 \over 4}}0\ 2..\ P_{ab}F1z]
8l1*[C222\ l]C2x2yz
      
22 F222
4a222 Fmmm aF
4b   [00{\textstyle{1 \over 2}}\ F]
4c   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4d   [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ F]
8e2.. Fmmm gF2x
8j   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2x]
8f.2.  F2y
8i   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2y]
8g..2  F2z
8h   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2z]
16k1*[ F222\ k]F2x2yz
      
23 I222
2a222 Immm aI
2b   [{\textstyle{1 \over 2}}00\ I]
2c   [00{\textstyle{1 \over 2}}\ I]
2d   [0{\textstyle{1 \over 2}}0\ I]
4e2.. Immm eI2x
4f   [00{\textstyle{1 \over 2}}\ I2x]
4g.2.  I2y
4h   [{\textstyle{1 \over 2}}00\ I2y]
4i..2  I2z
4j   [0{\textstyle{1 \over 2}}0\ I2z]
8k1*[ I222\ k]I2x2yz
      
24 [{\bi I}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}]
4a2.. Imma e[{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ ..2\ C_{c}B_{b}1x]
4b.2.  [{\textstyle{1 \over 4}{1 \over 4}}0\ 2..\ A_{a}C_{c}1y]
4c..2  [0{\textstyle{1 \over 4}{1 \over 4}}\ .2.\ B_{b}A_{a}1z]
8d1*[ I2_{1}2_{1}2_{1}\ d][{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ ..2\ C_{c}B_{b}1x2yz]
      
25 Pmm2
1amm2 Pmmm aP[z]
1b   [0{\textstyle{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
1c   [{\textstyle{1 \over 2}}00\ P\hbox{[}z\hbox{]}]
1d   [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2e.m. Pmmm iP2x[z]
2f   [0{\textstyle{1 \over 2}}0\ P2x\hbox{[}z\hbox{]}]
2gm..  P2y[z]
2h   [{\textstyle{1 \over 2}}00\ P2y\hbox{[}z\hbox{]}]
4i1 Pmmm uP2x2y[z]
      
26 [{\bi P}{\bi m}{\bi c}{\bf 2}_{\bf 1}]
2am.. Pmma e[2..\ P_{c}A1y\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 2}}00\ 2..\ P_{c}A1y\hbox{[}z\hbox{]}]
4c1 Pmma k[2..\ P_{c}A1y2x\hbox{[}z\hbox{]}]
      
27 Pcc2
2a..2 Pmmm a[P_{c}\hbox{[}z\hbox{]}]
2b   [0{\textstyle{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2c   [{\textstyle{1 \over 2}}00\ P_{c}\hbox{[}z\hbox{]}]
2d   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4e1 Pccm q[2..\ P_{c}2xy\hbox{[}z\hbox{]}]
      
28 Pma2
2a..2 Pmmm a[P_{a}\hbox{[}z\hbox{]}]
2b   [0{\textstyle{1 \over 2}}0\ P_{a}\hbox{[}z\hbox{]}]
2cm.. Pmma e[{\textstyle{1 \over 4}}00\ ..2\ P_{a}C1y\hbox{[}z\hbox{]}]
4d1 Pmma i[m..\ P_{a}2xy\hbox{[}z\hbox{]}]
      
29 [{\bi P}{\bi c}{\bi a}{\bf 2}_{\bf 1}]
4a1 Pbcm d[.2\bar{1}\ P_{ac}B_{a}C_{c}F1xy\hbox{[}z\hbox{]}]
      
30 Pnc2
2a..2 Cmmm aA[z]
2b   [{\textstyle{1 \over 2}}00\ A\hbox{[}z\hbox{]}]
4c1 Pmna h2.. A2xy[z]
      
31 [{\bi P}{\bi m}{\bi n}{\bf 2}_{\bf 1}]
2am.. Pmmn a[..2_{1}\ BI1y\hbox{[}z\hbox{]}]
4b1 Pmmn e[..2_{1}\ BI1y2x\hbox{[}z\hbox{]}]
      
32 Pba2
2a..2 Cmmm aC[z]
2b   [0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4c1 Pbam gb.. C2xy[z]
      
33 [{\bi P}{\bi n}{\bi a}{\bf 2}_{\bf 1}]
4a1 Pnma c[\bar{1}2_{1}. \ C_{c}A_{a}FI_{a}1xy\hbox{[}z\hbox{]}]
      
34 Pnn2
2a..2 Immm aI[z]
2b   [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4c1 Pnnm gn.. I2xy[z]
      
35 Cmm2
2amm2 Cmmm aC[z]
2b   [0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4c..2 Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}\hbox{[}z\hbox{]}]
4d.m. Cmmm gC2x[z]
4em..  C2y[z]
8f1 Cmmm pC2x2y[z]
      
36 [{\bi C}{\bi m}{\bi c}{\bf 2}_{\bf 1}]
4am.. Cmcm c[2_{1}..\ C_{c}F1y\hbox{[}z\hbox{]}]
8b1 Cmcm g[2_{1}..\ C_{c}F1y2x\hbox{[}z\hbox{]}]
      
37 Ccc2
4a..2 Cmmm a[C_{c}\hbox{[}z\hbox{]}]
4b   [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4c..2 Fmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ F\hbox{[}z\hbox{]}]
8d1 Cccm l[n..\ C_{c}2xy\hbox{[}z\hbox{]}]
      
38 Amm2
2amm2 Cmmm aA[z]
2b   [{\textstyle{1 \over 2}}00\ A\hbox{[}z\hbox{]}]
4c.m. Cmmm kA2x[z]
4dm.. Cmmm gA2y[z]
4e   [{\textstyle{1 \over 2}}00\ A2y\hbox{[}z\hbox{]}]
8f1 Cmmm nA2x2y[z]
      
39 Aem2
4a..2 Pmmm a[P_{bc}\hbox{[}z\hbox{]}]
4b   [{\textstyle{1 \over 2}}00\ P_{bc}\hbox{[}z\hbox{]}]
4c.m. Cmme g[0{\textstyle{1 \over 4}}0\ ..2\ P_{bc}F1x\hbox{[}z\hbox{]}]
8d1 Cmme m[.m.\ P_{bc}2xy\hbox{[}z\hbox{]}]
      
40 Ama2
4a..2 Cmmm a[A_{a}\hbox{[}z\hbox{]}]
4bm.. Cmcm c[{\textstyle{1 \over 4}}00\ ..2_{1}\ A_{a}F1y\hbox{[}z\hbox{]}]
8c1 Cmcm f[.n.\ A_{a}2xy\hbox{[}z\hbox{]}]
      
41 Aea2
4a..2 Fmmm aF[z]
8b1 Cmce f.2. F2xy[z]
      
42 Fmm2
4amm2 Fmmm aF[z]
8b..2 Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}\hbox{[}z\hbox{]}]
8cm.. Fmmm gF2y[z]
8d.m.  F2x[z]
16e1 Fmmm mF2x2y[z]
      
43 Fdd2
8a..2 Fddd aD[z]
16b1*[Fdd2\ b]d.. D2xy[z]
      
44 Imm2
2amm2 Immm aI[z]
2b   [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4c.m. Immm eI2x[z]
4dm..  I2y[z]
8e1 Immm lI2x2y[z]
      
45 Iba2
4a..2 Cmmm a[C_{c}\hbox{[}z\hbox{]}]
4b   [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8c1 Ibam j[b..\ C_{c}2xy\hbox{[}z\hbox{]}]
      
46 Ima2
4a..2 Cmmm a[A_{a}\hbox{[}z\hbox{]}]
4bm.. Imma e[{\textstyle{1 \over 4}}00\ 2..\ A_{a}C_{c}1y\hbox{[}z\hbox{]}]
8c1 Imma h[2..\ A_{a}2xy\hbox{[}z\hbox{]}]
      
47 Pmmm
1ammm*[ Pmmm\ a]P
1b   [{\textstyle{1 \over 2}}00\ P]
1c   [00{\textstyle{1 \over 2}}\ P]
1d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1e   [0{\textstyle{1 \over 2}}0\ P]
1f   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1g   [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}]
2i2mm*[ Pmmm\ i]P2x
2j   [00{\textstyle{1 \over 2}}\ P2x]
2k   [0{\textstyle{1 \over 2}}0\ P2x]
2l   [0{\textstyle{1 \over 2}{1 \over 2}}\ P2x]
2mm2m  P2y
2n   [00{\textstyle{1 \over 2}}\ P2y]
2o   [{\textstyle{1 \over 2}}00\ P2y]
2p   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2qmm2  P2z
2r   [0{\textstyle{1 \over 2}}0\ P2z]
2s   [{\textstyle{1 \over 2}}00\ P2z]
2t   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4um..*[Pmmm\ u]P2y2z
4v   [{\textstyle{1 \over 2}}00\ P2y2z]
4w.m.  P2x2z
4x   [0{\textstyle{1 \over 2}}0\ P2x2z]
4y..m  P2x2y
4z   [00{\textstyle{1 \over 2}}\ P2x2y]
8α1*[Pmmm\ \alpha]P2x2y2z
      
48 Pnnn
2a222 Immm aI
2b   [{\textstyle{1 \over 2}}00\ I]
2c   [00{\textstyle{1 \over 2}}\ I]
2d   [0{\textstyle{1 \over 2}}0\ I]
4e[\bar{1}] Fmmm a[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4f   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
4g2.. Immm eI2x
4h   [00{\textstyle{1 \over 2}}\ I2x]
4i.2.  I2y
4j   [{\textstyle{1 \over 2}}00\ I2y]
4k..2  I2z
4l   [0{\textstyle{1 \over 2}}0\ I2z]
8m1*[Pnnn\ m]n.. I2x2yz
      
49 Pccm
2a[..2/m] Pmmm a[P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2c   [0{\textstyle{1 \over 2}}0\ P_{c}]
2d   [{\textstyle{1 \over 2}}00\ P_{c}]
2e222 Pmmm a[00{\textstyle{1 \over 4}}\ P_{c}]
2f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ P_{c}]
2g   [0{\textstyle{1 \over 2}{1 \over 4}}\ P_{c}]
2h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4i2.. Pmmm i[00{\textstyle{1 \over 4}}\ P_{c}2x]
4j   [0{\textstyle{1 \over 2}{1 \over 4}}\ P_{c}2x]
4k.2.  [00{\textstyle{1 \over 4}}\ P_{c}2y]
4l   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ P_{c}2y]
4m..2 Pmmm i[P_{c}2z]
4n   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4o   [0{\textstyle{1 \over 2}}0\ P_{c}2z]
4p   [{\textstyle{1 \over 2}}00\ P_{c}2z]
4q..m*[ Pccm\ q][2..\ P_{c}2xy]
8r1*[Pccm\ r][c..\ P_{c}2xy2z]
      
50 Pban
2a222 Cmmm aC
2b   [{\textstyle{1 \over 2}}00\ C]
2c   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2d   [00{\textstyle{1 \over 2}}\ C]
4e[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4f   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4g2.. Cmmm gC2x
4h   [00{\textstyle{1 \over 2}}\ C2x]
4i.2.  C2y
4j   [00{\textstyle{1 \over 2}}\ C2y]
4k..2 Cmmm kC2z
4l   [0{\textstyle{1 \over 2}}0\ C2z]
8m1*[Pban\ m]b.. C2x2yz
      
51 Pmma
2a[.2/m.] Pmmm a[P_{a}]
2b   [0{\textstyle{1 \over 2}}0\ P_{a}]
2c   [00{\textstyle{1 \over 2}}\ P_{a}]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ P_{a}]
2emm2*[Pmma\ e][{\textstyle{1 \over 4}}00\ .2.\ P_{a}B1z]
2f   [{\textstyle{1 \over 4}{1 \over 2}}0\ .2.\ P_{a}B1z]
4g.2. Pmmm i[P_{a}2y]
4h   [00{\textstyle{1 \over 2}}\ P_{a}2y]
4i.m.*[Pmma\ i][m..\ P_{a}2xz]
4j   [0{\textstyle{1 \over 2}}0\ m..\ P_{a}2xz]
4km..*[Pmma\ k][{\textstyle{1 \over 4}}00\ .2.\ P_{a}B1z2y]
8l1*[Pmma\ l][m..\ P_{a}2xz2y]
      
52 Pnna
4a[\bar{1}] Cmmm a[A_{a}]
4b   [00{\textstyle{1 \over 2}}\ A_{a}]
4c..2 Imma e[{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ .2.\ B_{b}A_{a}1z]
4d2.. Cmcm c[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ ..2_{1}\ B_{b}F1x]
8e1*[Pnna\ e][2.2\ A_{a}2xyz]
      
53 Pmna
2a[2/m..] Cmmm aB
2b   [{\textstyle{1 \over 2}}00\ B]
2c   [{\textstyle{1 \over 2}{1 \over 2}}0\ B]
2d   [0{\textstyle{1 \over 2}}0\ B]
4e2.. Cmmm gB2x
4f   [0{\textstyle{1 \over 2}}0\ B2x]
4g.2. Pmma e[{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ (2..\ P_{c}A1y)_{a}]
4hm..*[Pmna\ h].2. B2yz
8i1*[Pmna\ i].2. B2yz2x
      
54 Pcca
4a[\bar{1}] Pmmm a[P_{ac}]
4b   [0{\textstyle{1 \over 2}}0\ P_{ac}]
4c.2. Cmme g[00{\textstyle{1 \over 4}}\ ..2\ P_{ac}F1y]
4d..2 Pmma e[{\textstyle{1 \over 4}}00\ (.2. \ P_{a}B1z)_{c}]
4e   [{\textstyle{1 \over 4}{1 \over 2}}0\ (.2.\ P_{a}B1z)_{c}]
8f1*[Pcca\ f][.22\ P_{ac}2xyz]
      
55 Pbam
2a[..2/m] Cmmm aC
2b   [00{\textstyle{1 \over 2}}\ C]
2c   [0{\textstyle{1 \over 2}}0\ C]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4e..2 Cmmm kC2z
4f   [0{\textstyle{1 \over 2}}0\ C2z]
4g..m*[Pbam\ g]b.. C2xy
4h   [00{\textstyle{1 \over 2}}\ b..\ C2xy]
8i1*[Pbam\ i]b.. C2xy2z
      
56 Pccn
4a[\bar{1}] Fmmm aF
4b   [00{\textstyle{1 \over 2}}\ F]
4c..2 Pmmn a[{\textstyle{1 \over 4}{1 \over 4}}0\ (2_{1}..\ CI1z)_{c}]
4d   [{\textstyle{1 \over 4}{3 \over 4}}0\ (2_{1}..\ CI1z)_{c}]
8e1*[Pccn\ e]c.2 F2xyz
      
57 Pbcm
4a[\bar{1}] Pmmm a[P_{bc}]
4b   [{\textstyle{1 \over 2}}00\ P_{bc}]
4c2.. Pmma e[0{\textstyle{1 \over 4}}0\ (..2\ P_{b}C1x)_{c}]
4d..m*[Pbcm\ d][00{\textstyle{1 \over 4}}\ 2.\bar{1}\ P_{bc}A_{b}C_{c}F1xy]
8e1*[Pbcm\ e][2.m\ P_{bc}2xyz]
      
58 Pnnm
2a[..2/m] Immm aI
2b   [00{\textstyle{1 \over 2}}\ I]
2c   [0{\textstyle{1 \over 2}}0\ I]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
4e..2 Immm eI2z
4f   [0{\textstyle{1 \over 2}}0\ I2z]
4g..m*[Pnnm\ g]n.. I2xy
8h1*[Pnnm\ h]n.. I2xy2z
      
59 Pmmn
2amm2*[Pmmn\ a][2_{1}..\ CI1z]
2b   [0{\textstyle{1 \over 2}}0\ 2_{1}..\ CI1z]
4c[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4d   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4em..*[Pmmn\ e][2_{1}..\ CI1z2y]
4f.m.  [.2_{1}.\ CI1z2x]
8g1*[Pmmn\ g][{\textstyle{1 \over 4}{1 \over 4}}0\ mm.\ P_{ab}2xyz]
      
60 Pbcn
4a[\bar{1}] Cmmm a[C_{c}]
4b   [0{\textstyle{1 \over 2}}0\ C_{c}]
4c.2. Cmcm c[00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8d1*[Pbcn\ d][b2.\ C_{c}2xyz]
      
61 Pbca
4a[\bar{1}] Fmmm aF
4b   [00{\textstyle{1 \over 2}}\ F]
8c1*[Pbca\ c]bc. F2xyz
      
62 Pnma
4a[\bar{1}] Cmmm a[B_{b}]
4b   [00{\textstyle{1 \over 2}}\ B_{b}]
4c.m.*[Pnma\ c][0{\textstyle{1 \over 4}}0\ \bar{1}. 2_{1}\ B_{b}A_{a}FI_{a}1xz]
8d1*[Pnma\ d][.ma\ B_{b}2xyz]
      
63 Cmcm
4a[2/m..] Cmmm a[C_{c}]
4b   [0{\textstyle{1 \over 2}}0\ C_{c}]
4cm2m*[Cmcm\ c][00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8d[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8e2.. Cmmm g[C_{c}2x]
8fm..*[Cmcm\ f][.n.\ C_{c}2yz]
8g..m*[Cmcm\ g][00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y2x]
16h1*[Cmcm\ h][.n.\ C_{c}2yz2x]
      
64 Cmce
4a[2/m..] Fmmm aF
4b   [00{\textstyle{1 \over 2}}\ F]
8c[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8d2.. Fmmm gF2x
8e.2. Pmma e[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ (2..\ P_{c}A1y)_{ab}]
8fm..*[Cmce\ f].2. F2yz
16g1*[Cmce\ g].2. F2yz2x
      
65 Cmmm
2ammm*[Cmmm\ a]C
2b   [{\textstyle{1 \over 2}}00\ C]
2c   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2d   [00{\textstyle{1 \over 2}}\ C]
4e[..2/m] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4f   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4g2mm*[Cmmm\ g]C2x
4h   [00{\textstyle{1 \over 2}}\ C2x]
4im2m  C2y
4j   [00{\textstyle{1 \over 2}}\ C2y]
4kmm2*[Cmmm\ k]C2z
4l   [0{\textstyle{1 \over 2}}0\ C2z]
8m..2 Pmmm i[{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}2z]
8nm..*[Cmmm\ n]C2y2z
8o.m.  C2x2z
8p..m*[Cmmm\ p]C2x2y
8q   [00{\textstyle{1 \over 2}}\ C2x2y]
16r1*[Cmmm\ r]C2x2y2z
      
66 Cccm
4a222 Cmmm a[00{\textstyle{1 \over 4}}\ C_{c}]
4b   [0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4c[..2/m] Cmmm a[C_{c}]
4d   [0{\textstyle{1 \over 2}}0\ C_{c}]
4e[..2/m] Fmmm a[{\textstyle{1 \over 4}{1 \over 4}}0\ F]
4f   [{\textstyle{1 \over 4}{3 \over 4}}0\ F]
8g2.. Cmmm g[00{\textstyle{1 \over 4}}\ C_{c}2x]
8h.2.  [00{\textstyle{1 \over 4}}\ C_{c}2y]
8i..2 Cmmm k[C_{c}2z]
8j   [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8k..2 Fmmm g[{\textstyle{1 \over 4}{1 \over 4}}0\ F2z]
8l..m*[Cccm\ l][c..\ C_{c}2xy]
16m1*[Cccm\ m][c..\ C_{c}2xy2z]
      
67 Cmme
4a222 Pmmm a[{\textstyle{1 \over 4}}00\ P_{ab}]
4b   [{\textstyle{1 \over 4}}0{\textstyle{1 \over 2}}\ P_{ab}]
4c[2/m..] Pmmm a[P_{ab}]
4d   [00{\textstyle{1 \over 2}}\ P_{ab}]
4e[.2/m.]  [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4f   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4gmm2*[ Cmme\ g][0{\textstyle{1 \over 4}}0\ 2..\ P_{ab}F1z]
8h2.. Pmmm i[P_{ab}2x]
8i   [00{\textstyle{1 \over 2}}\ P_{ab}2x]
8j.2.  [{\textstyle{1 \over 4}}00\ P_{ab}2y]
8k   [{\textstyle{1 \over 4}}0{\textstyle{1 \over 2}}\ P_{ab}2y]
8l..2 Pmmm i[{\textstyle{1 \over 4}}00\ P_{ab}2z]
8mm..*[Cmme\ m][.m.\ P_{ab}2yz]
8n.m.  [0{\textstyle{1 \over 4}}0\ m..\ P_{ab}2xz]
16o1*[Cmme\ o][.m.\ P_{ab}2yz2x]
      
68 Ccce
4a222 Fmmm aF
4b   [00{\textstyle{1 \over 2}}\ F]
8c[\bar{1}] Pmmm a[{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ P_{2}]
8d   [0{\textstyle{1 \over 4}{1 \over 4}}\ P_{2}]
8e2.. Fmmm gF2x
8f.2.  F2y
8g..2 Fmmm gF2z
8h..2 Cmme g[{\textstyle{1 \over 4}{1 \over 4}}0\ (2..\ P_{ab}F1z)_{c}]
16i1*[Ccce\ i]c.. F2x2yz
      
69 Fmmm
4ammm*[Fmmm\ a]F
4b   [00{\textstyle{1 \over 2}}\ F]
8c[2/m..] Pmmm a[0{\textstyle{1 \over 4}{1 \over 4}}\ P_{2}]
8d[.2/m.]  [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ P_{2}]
8e[..2/m]  [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8f222 Pmmm a[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8g2mm*[Fmmm\ g]F2x
8hm2m  F2y
8imm2  F2z
16j..2 Pmmm i[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2z]
16k.2.  [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2y]
16l2..  [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2x]
16mm..*[Fmmm\ m]F2y2z
16n.m.  F2x2z
16o..m  F2x2y
32p1*[Fmmm\ p]F2x2y2z
      
70 Fddd
8a222*[Fddd\ a]D
8b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ D]
16c[\bar{1}]*[Fddd\ c]T
16d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ T]
16e2..*[Fddd\ e]D2x
16f.2.  D2y
16g..2  D2z
32h1*[Fddd\ h]d.. D2x2yz
      
71 Immm
2ammm*[Immm\ a]I
2b   [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2c   [{\textstyle{1 \over 2}{1 \over 2}}0\ I]
2d   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ I]
4e2mm*[Immm\ e]I2x
4f   [0{\textstyle{1 \over 2}}0\ I2x]
4gm2m  I2y
4h   [00{\textstyle{1 \over 2}}\ I2y]
4imm2  I2z
4j   [{\textstyle{1 \over 2}}00\ I2z]
8k[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8lm..*[Immm\ l]I2y2z
8m.m.  I2x2z
8n..m  I2x2y
16o1*[Immm\ o]I2x2y2z
      
72 Ibam
4a222 Cmmm a[00{\textstyle{1 \over 4}}\ C_{c}]
4b   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ C_{c}]
4c[..2/m] Cmmm a[C_{c}]
4d   [{\textstyle{1 \over 2}}00\ C_{c}]
8e[\bar{1}] Pmmm a[{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8f2.. Cmmm g[00{\textstyle{1 \over 4}}\ C_{c}2x]
8g.2.  [00{\textstyle{1 \over 4}}\ C_{c}2y]
8h..2 Cmmm k[C_{c}2z]
8i   [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8j..m*[Ibam\ j][c..\ C_{c}2xy]
16k1*[Ibam\ k][c..\ C_{c}2xy2z]
      
73 Ibca
8a[\bar{1}] Pmmm a[P_{2}]
8b   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8c2.. Cmme g[00{\textstyle{1 \over 4}}\ (.2.\ P_{bc}F1x)_{a}]
8d.2.  [{\textstyle{1 \over 4}}00\ (..2\ P_{ac}F1y)_{b}]
8e..2  [0{\textstyle{1 \over 4}}0\ (2..\ P_{ab}F1z)_{c}]
16f1*[Ibca\ f][22.\ P_{2}2xyz]
      
74 Imma
4a[2/m..] Cmmm a[B_{b}]
4b   [00{\textstyle{1 \over 2}}\ B_{b}]
4c[.2/m.]  [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ A_{a}]
4d   [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ A_{a}]
4emm2*[Imma\ e][0{\textstyle{1 \over 4}}0\ .2.\ B_{b}A_{a}1z]
8f2.. Cmmm g[B_{b}2x]
8g.2.  [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ A_{a}2y]
8hm..*[Imma\ h][.2.\ B_{b}2yz]
8i.m.  [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ 2..\ A_{a}2xz]
16j1*[Imma\ j][.2.\ B_{b}2yz2x]
      
75 P4
1a4.. [P4/mmm\ a]P[z]
1b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2c2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4d1 [P4/m\ j]P4xy[z]
      
76 [{\bi P}{\bf 4}_{\bf 1}]
4a1*[P4_{3}\ a][4_{1}..\ P_{cc}{^{v}D}I_{c}1xy\hbox{[}z\hbox{]}]
      
77 [{\bi P}{\bf 4}_{\bf 2}]
2a2.. [P4/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2c2.. [I4/mmm\ a][0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4d1 [P4_{2}/m\ j][\bar{4}..\ P_{c}2xy\hbox{[}z\hbox{]}]
      
78 [{\bi P}{\bf 4}_{\bf 3}]
4a *[P4_{3}\ a][4_{3}..\ P_{cc}{^{v}D}I_{c}1xy\hbox{[}z\hbox{]}]
      
79 I4
2a4.. [I4/mmm\ a]I[z]
4b2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8c1 [I4/m\ h]I4xy[z]
      
80 [{\bi I}{\bf 4}_{\bf 1}]
4a2.. [I4_{1}/amd\ a][^{v}D\hbox{[}z\hbox{]}]
8b1*[I4_{1}\ b][4_{1}..\ ^{v}D2xy\hbox{[}z\hbox{]}]
      
81 [{\bi P}\bar{\bf 4}]
1a[\bar{4}..] [P4/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2e2.. [P4/mmm\ g]P2z
2f   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
2g2.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4h1*[P\bar{4}\ h]P4xyz
      
82 [{\bi I}\bar{\bf 4}]
2a[\bar{4}..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
2c   [0{\textstyle{1 \over 2}{1 \over 4}}\ I]
2d   [0{\textstyle{1 \over 2}{3 \over 4}}\ I]
4e2.. [I4/mmm\ e]I2z
4f   [0{\textstyle{1 \over 2}{1 \over 4}}\ I2z]
8g1*[I\bar{4}\ g]I4xyz
      
83 [{\bi P}{\bf 4}/{\bi m}]
1a[4/m..] [P4/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2e[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C]
2f   [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
2g4.. [P4/mmm\ g]P2z
2h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4i2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4jm..*[P4/m\ j]P4xy
4k   [00{\textstyle{1 \over 2}}\ P4xy]
8l1*[P4/m\ l]P4xy2z
      
84 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}]
2a[2/m..] [P4/mmm\ a][P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2c[2/m..] [I4/mmm\ a][0{\textstyle{1 \over 2}}0\ I]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2e[\bar{4}..] [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4g2.. [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4i2.. [I4/mmm\ e][0{\textstyle{1 \over 2}}0\ I2z]
4jm..*[P4_{2}/m\ j][\bar{4}..\ P_{c}2xy]
8k1*[P4_{2}/m\ k][\bar{4}..\ P_{c}2xy2z]
      
85 [{\bi P}{\bf 4}/{\bi n}]
2a[\bar{4}..] [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c4.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4d[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4e   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4f2.. [P4/mmm\ g]C2z
8g1*[P4/n\ g][\bar{1}\ C4xyz]
      
86 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}]
2a[\bar{4}..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c[\bar{1}] [I4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4d   [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ F]
4e2.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2 \ CI1z)_{c}]
4f2.. [I4/mmm\ e]I2z
8g1*[P4_{2}/n\ g]n.. I4xyz
      
87 [{\bi I}{\bf 4}/{\bi m}]
2a[4/m..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d[\bar{4}..] [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e4.. [I4/mmm\ e]I2z
8f[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8g2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8hm..*[I4/m\ h]I4xy
16i1*[I4/m\ i]I4xy2z
      
88 [{\bi I}{\bf 4}_{\bf 1}/{\bi a}]
4a[\bar{4}..] [I4_{1}/amd\ a][^{v}D]
4b   [00{\textstyle{1 \over 2}}\ ^{v}D]
8c[\bar{1}] [I4_{1}/amd\ c][^{v}T]
8d   [00{\textstyle{1 \over 2}}\ ^{v}T]
8e2.. [I4_{1}/amd\ e][^{v}D2z]
16f1*[I4_{1}/a\ f][a..\ ^{v}D4xyz]
      
89 P422
1a422 [P4/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2e222. [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C]
2f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2g4.. [P4/mmm\ g]P2z
2h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4i2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4j..2 [P4/mmm\ j]P4xx
4k   [00{\textstyle{1 \over 2}}\ P4xx]
4l.2. [P4/mmm\ l]P4x
4m   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P4x]
4n   [00{\textstyle{1 \over 2}}\ P4x]
4o   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x]
8p1*[P422\ p]P4x2yz
      
90 [{\bi P}{\bf 42}_{\bf 1}{\bf 2}]
2a2.22 [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c4.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4d2.. [P4/mmm\ g]C2z
4e..2 [P4/mbm\ g].b. C2xx
4f   [00{\textstyle{1 \over 2}}\ .b.\ C2xx]
8g1*[P42 _{1}2\ g][.2_{1}.\ C2xx2yz]
      
91 [{\bi P}{\bf 4}_{\bf 1}{\bf 22}]
4a.2.*[P4_{3}22\ a][00{\textstyle{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x]
4b   [{\textstyle{1 \over 2}{1 \over 2}{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x]
4c..2*[ P4_{3}22\ c][00{\textstyle{3 \over 8}}\ 4_{1}..\ P_{cc}{^{v}D}1xx]
8d1*[P4_{3}22\ d][00{\textstyle{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x2yz]
      
92 [{\bi P}{\bf 4}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}]
4a..2*[P4_{3}2_{1}2\ a][4_{1}..\ I_{c}{^{v}D}1xx]
8b1*[P4_{3}2_{1}2\ b][4_{1}..\ I_{c}{^{v}D}1xx2yz]
      
93 [{\bi P}{\bf 4}_{\bf 2}{\bf 22}]
2a222. [P4/mmm\ a][P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2c222. [I4/mmm\ a][0{\textstyle{1 \over 2}}0\ I]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2e2.22 [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4g2.. [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4i2.. [I4/mmm\ e][0{\textstyle{1 \over 2}}0\ I2z]
4j.2. [P4_{2}/mmc\ j][..2\ P_{c}2x]
4k   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ ..2\ P_{c}2x]
4l   [00{\textstyle{1 \over 2}}\ ..2\ P_{c}2x]
4m   [{\textstyle{1 \over 2}{1 \over 2}}0\ ..2\ P_{c}2x]
4n..2 [P4_{2}/mcm\ i][00{\textstyle{1 \over 4}}\ .2.\ P_{c}2xx]
4o   [00{\textstyle{3 \over 4}}\ .2.\ P_{c}2xx]
8p1*[P4_{2}22\ p][..2\ P_{c}2x2yz]
      
94 [{\bi P}{\bf 4}_{\bf 2}{\bf 2}_{\bf 1}{\bf 2}]
2a2.22 [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c2.. [I4/mmm\ e]I2z
4d2.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
4e..2 [P4_{2}/mnm\ f].n. I2xx
4f   [00{\textstyle{1 \over 2}}\ .n.\ I2xx]
8g1*[P4_{2}2_{1}2\ g][.2_{1}.\ I2xx2yz]
      
95 [{\bi P}{\bf 4}_{\bf 3}{\bf 22}]
4a.2.*[P4_{3}22\ a][00{\textstyle{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x]
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x]
4c..2*[P4_{3}22\ c][00{\textstyle{5 \over 8}}\ 4_{3}..\ P_{cc}{^{v}D}1xx]
8d1*[P4_{3}22\ d][00{\textstyle{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x2yz]
      
96 [{\bi P}{\bf 4}_{\bf 3}{\bf 2}_{\bf 1}{\bf 2}]
4a..2*[P4_{3}2_{1}2\ a][4_{3}..\ I_{c}{^{v}D}1xx]
8b1*[P4_{3}2_{1}2\ b][4_{3}..\ I_{c}{^{v}D}1xx2yz]
      
97 I422
2a422 [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c222. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e4.. [I4/mmm\ e]I2z
8f2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8g..2 [I4/mmm\ h]I4xx
8h.2. [I4/mmm\ i]I4x
8i   [00{\textstyle{1 \over 2}}\ I4x]
8j..2 [I4/mcm\ h][0{\textstyle{1 \over 2}{1 \over 4}}\ .b.\ C_{c}2xx]
16k1*[I422\ k]I4x2yz
      
98 [{\bi I}{\bf 4}_{\bf 1}{\bf 22}]
4a2.22 [I4_{1}/amd\ a][^{v}D]
4b   [00{\textstyle{1 \over 2}}\ ^{v}D]
8c2.. [I4_{1}/amd\ e][^{v}D2z]
8d..2*[I4_{1}22\ d][.2.\ ^{v}D2xx]
8e   [.2.\ ^{v}D2x\bar{x}]
8f.2.*[I4_{1}22\ f][..22\ ^{v}TC_{cc}1x]
16g1*[I4_{1}22\ g][.2.\ ^{v}D2xx2yz]
      
99 P4mm
1a4mm [P4/mmm\ a]P[z]
1b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2c2mm. [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C\hbox{[}z\hbox{]}]
4d..m [P4/mmm\ j]P4xx[z]
4e.m. [P4/mmm\ l]P4x[z]
4f   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x\hbox{[}z\hbox{]}]
8g1 [P4/mmm\ p]P4x2y[z]
      
100 P4bm
2a4.. [P4/mmm\ a]C[z]
2b2.mm [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C\hbox{[}z\hbox{]}]
4c..m [P4/mbm\ g][0{\textstyle{1 \over 2}}0\ .b.\ C2xx\hbox{[}z\hbox{]}]
8d1 [P4/mbm\ i]..m C4xy[z]
      
101 [{\bi P}{\bf 4}_{\bf 2}{\bi c}{\bi m}]
2a2.mm [P4/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4c2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4d..m [P4_{2}/mcm\ i][.2.\ P_{c}2xx\hbox{[}z\hbox{]}]
8e1 [P4_{2}/mcm\ n][.2.\ P_{c}2xx2y\hbox{[}z\hbox{]}]
      
102 [{\bi P}{\bf 4}_{\bf 2}{\bi n}{\bi m}]
2a2.mm [I4/mmm\ a]I[z]
4b2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4c..m [P4_{2}/mnm\ f].n. I2xx[z]
8d1 [P4_{2}/mnm\ i].n. I2xx2y[z]
      
103 P4cc
2a4.. [P4/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4c2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8d1 [P4/mcc\ m][.c.\ P_{c}4xy\hbox{[}z\hbox{]}]
      
104 P4nc
2a4.. [I4/mmm\ a]I[z]
4b2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8c1 [P4/mnc\ h]..2 I4xy[z]
      
105 [{\bi P}{\bf 4}_{\bf 2}{\bi m}{\bi c}]
2a2mm. [P4/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2c2mm. [I4/mmm\ a][0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4d.m. [P4_{2}/mmc\ j][..2\ P_{c}2x\hbox{[}z\hbox{]}]
4e   [{\textstyle{1 \over 2}{1 \over 2}}0\ ..2\ P_{c}2x\hbox{[}z\hbox{]}]
8f1 [P4_{2}/mmc\ q][..2\ P_{c}2x2y\hbox{[}z\hbox{]}]
      
106 [{\bi P}{\bf 4}_{\bf 2}{\bi b}{\bi c}]
4a2.. [P4/mmm\ a][C_{c}\hbox{[}z\hbox{]}]
4b2.. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8c1 [P4_{2}/mbc\ h][.b2\ C_{c}2xy\hbox{[}z\hbox{]}]
      
107 I4mm
2a4mm [I4/mmm\ a]I[z]
4b2mm. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8c..m [I4/mmm\ h]I4xx[z]
8d.m. [I4/mmm\ i]I4x[z]
16e1 [I4/mmm\ l]I4x2y[z]
      
108 I4cm
4a4.. [P4/mmm\ a][C_{c}\hbox{[}z\hbox{]}]
4b2.mm [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C_{c}\hbox{[}z\hbox{]}]
8c..m [I4/mcm\ h][{\textstyle{1 \over 2}}00\ .b.\ C_{c}2xx\hbox{[}z\hbox{]}]
16d1 [I4/mcm\ k][..m\ C_{c}4xy\hbox{[}z\hbox{]}]
      
109 [{\bi I}{\bf 4}_{\bf 1}{\bi m}{\bi d}]
4a2mm. [I4_{1}/amd\ a][^{v}D\hbox{[}z\hbox{]}]
8b.m.*[I4_{1}md\ b][..d\ ^{v}D2x\hbox{[}z\hbox{]}]
16c1*[I4_{1}md\ c][..d\ ^{v}D2x2y\hbox{[}z\hbox{]}]
      
110 [{\bi I}{\bf 4}_{\bf 1}{\bi c}{\bi d}]
8a2.. [I4/mmm\ a][F_{c}\hbox{[}z\hbox{]}]
16b1*[I4_{1}cd\ b][.bd\ F_{c}2xy\hbox{[}z\hbox{]}]
      
111 [{\bi P}\bar{{\bf 4}}{\bf 2}{\bi m}]
1a[\bar{4}2m] [P4/mmm\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
1c   [00{\textstyle{1 \over 2}}\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
2e222. [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C]
2f   [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2g2.mm [P4/mmm\ g]P2z
2h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4i.2. [P4/mmm\ l]P4x
4j   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P4x]
4k   [00{\textstyle{1 \over 2}}\ P4x]
4l   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x]
4m2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4n..m*[P\bar{4}2m\ n]P4xxz
8o1*[P\bar{4}2m\ o]P4xxz2y
      
112 [{\bi P}\bar{\bf 4}{\bf 2}{\bi c}]
2a222. [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2c   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
2b222. [I4/mmm\ a][{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ I]
2d   [0{\textstyle{1 \over 2}{1 \over 4}}\ I]
2e[\bar{4}..] [P4/mmm\ a][P_{c}]
2f   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
4g.2. [P4_{2}/mmc\ j][00{\textstyle{1 \over 4}}\ ..2\ P_{c}2x]
4h   [{\textstyle{1 \over 2}{1 \over 2}{3 \over 4}}\ ..2\ P_{c}2x]
4i   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ ..2\ P_{c}2x]
4j   [00{\textstyle{3 \over 4}}\ ..2\ P_{c}2x]
4k2.. [P4/mmm\ g][P_{c}2z]
4l   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4m2.. [I4/mmm\ e][0{\textstyle{1 \over 2}{1 \over 4}}\ I2z]
8n1*[P\bar{4}2c\ n][.2.\ P_{c}4xyz]
      
113 [{\bi P}\bar{\bf 4}{\bf 2}_{\bf 1}{\bi m}]
2a[\bar{4}..] [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c2.mm [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4d2.. [P4/mmm\ g]C2z
4e..m*[P\bar{4}2_{1}m\ e][0{\textstyle{1 \over 2}}0\ .2_{1}.\ CI1z2xx]
8f1*[P\bar{4}2_{1}m\ f]..m C4xyz
      
114 [{\bi P}\bar{\bf 4}{\bf 2}_{\bf 1}{\bi c}]
2a[\bar{4}..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c2.. [I4/mmm\ e]I2z
4d2.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
8e1*[P\bar{4}2_{1}c\ e]..c I4xyz
      
115 [{\bi P}\bar{{\bf 4}}{\bi m}{\bf 2}]
1a[\bar{4}m2] [P4/mmm\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1c   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
1d   [00{\textstyle{1 \over 2}}\ P]
2e2mm. [P4/mmm\ g]P2z
2f   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
2g2mm. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4h..2 [P4/mmm\ j]P4xx
4i   [00{\textstyle{1 \over 2}}\ P4xx]
4j.m.*[P\bar{4}m2\ j]P4xz
4k   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4xz]
8l1*[P\bar{4}m2\ l]P4xz2y
      
116 [{\bi P}\bar{\bf 4}{\bi c}{\bf 2}]
2a2.22 [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
2c[\bar{4}..] [P4/mmm\ a][P_{c}]
2d   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
4e..2 [P4_{2}/mcm\ i][00{\textstyle{1 \over 4}}\ .2.\ P_{c}2xx]
4f   [00{\textstyle{3 \over 4}}\ .2.\ P_{c}2xx]
4g2.. [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4i2.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
8j1*[P\bar{4}c2\ j][..2\ P_{c}4xyz]
      
117 [{\bi P}\bar{\bf 4}{\bi b}{\bf 2}]
2a[\bar{4}..] [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4e2.. [P4/mmm\ g]C2z
4f2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4g..2 [P4/mbm\ g][0{\textstyle{1 \over 2}}0\ .b.\ C2xx]
4h   [0{\textstyle{1 \over 2}{1 \over 2}}\ .b.\ C2xx]
8i1*[P\bar{4}b2\ i]..2 C4xyz
      
118 [{\bi P}\bar{\bf 4}{\bi n}{\bf 2}]
2a[\bar{4}..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
2c2.22 [I4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ I]
2d   [0{\textstyle{1 \over 2}{3 \over 4}}\ I]
4e2.. [I4/mmm\ e]I2z
4f..2 [P4_{2}/mnm\ f][{\textstyle{1 \over 2}}0{\textstyle{3 \over 4}}\ .n.\ I2xx]
4g   [0{\textstyle{1 \over 2}{1 \over 4}}\ .n.\ I2xx]
4h2.. [I4/mmm\ e][0{\textstyle{1 \over 2}{1 \over 4}}\ I2z]
8i1*[P\bar{4}n2\ i]..2 I4xyz
      
119 [{\bi I}\bar{\bf 4}{\bi m}{\bf 2}]
2a[\bar{4}m2] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
2c   [0{\textstyle{1 \over 2}{1 \over 4}}\ I]
2d   [0{\textstyle{1 \over 2}{3 \over 4}}\ I]
4e2mm. [I4/mmm\ e]I2z
4f   [0{\textstyle{1 \over 2}{1 \over 4}}\ I2z]
8g..2 [I4/mmm\ h]I4xx
8h   [0{\textstyle{1 \over 2}{1 \over 4}}\ I4xx]
8i.m.*[I\bar{4}m2\ i]I4xz
16j1*[I\bar{4}m2\ j]I4xz2y
      
120 [{\bi I}\bar{\bf 4}{\bi c}{\bf 2}]
4a2.22 [P4/mmm\ a][00{\textstyle{1 \over 4}}\ C_{c}]
4d   [0{\textstyle{1 \over 2}}0\ C_{c}]
4b[\bar{4}..] [P4/mmm\ a][C_{c}]
4c   [0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
8e..2 [I4/mcm\ h][00{\textstyle{1 \over 4}}\ .b.\ C_{c}2xx]
8h   [0{\textstyle{1 \over 2}}0\ .b.\ C_{c}2xx]
8f2.. [P4/mmm\ g][C_{c}2z]
8g   [0{\textstyle{1 \over 2}}0\ C_{c}2z]
16i1*[I\bar{4}c2\ i][..2\ C_{c}4xyz]
      
121 [{\bi I}\bar{\bf 4}{\bf 2}{\bi m}]
2a[\bar{4}2m] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c222. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d[\bar{4}..] [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e2.mm [I4/mmm\ e]I2z
8f.2. [I4/mmm\ i]I4x
8g   [00{\textstyle{1 \over 2}}\ I4x]
8h2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8i..m*[I\bar{4}2m\ i]I4xxz
16j1*[I\bar{4}2m\ j]I4xxz2y
      
122 [{\bi I}\bar{\bf 4}{\bf 2}{\bi d}]
4a[\bar{4}..] [I4_{1}/amd\ a][^{v}D]
4b   [00{\textstyle{1 \over 2}}\ ^{v}D]
8c2.. [I4_{1}/amd\ e][^{v}D2z]
8d.2.*[I\bar{4}2d\ d][\bar{4}..\ ^{v}TF_{c}1x]
16e1*[I\bar{4}2d\ e][.2.\ ^{v}D4xyz]
      
123 [{\bi P}{\bf 4}/{\bi m}{\bi m}{\bi m}]
1a[4/mmm]*[P4/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2emmm. [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 2}}\ C]
2f   [0{\textstyle{1 \over 2}}0\ C]
2g4mm*[P4/mmm\ g]P2z
2h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4i2mm. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4jm.2m*[P4/mmm\ j]P4xx
4k   [00{\textstyle{1 \over 2}}\ P4xx]
4lm2m.*[P4/mmm\ l]P4x
4m   [00{\textstyle{1 \over 2}}\ P4x]
4n   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x]
4o   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P4x]
8pm..*[P4/mmm\ p]P4x2y
8q   [00{\textstyle{1 \over 2}}\ P4x2y]
8r..m*[P4/mmm\ r]P4xx2z
8s.m.*[P4/mmm\ s]P4x2z
8t   [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x2z]
16u1*[P4/mmm\ u]P4x2y2z
      
124 [{\bi P}{\bf 4}/{\bi m}{\bi c}{\bi c}]
2a422 [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2c   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
2b[4/m..] [P4/mmm\ a][P_{c}]
2d   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
4e[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4f222. [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4g4.. [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
8i2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8j..2 [P4/mmm\ j][00{\textstyle{1 \over 4}}\ P_{c}4xx]
8k.2. [P4/mmm\ l][00{\textstyle{1 \over 4}}\ P_{c}4x]
8l   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}4x]
8mm..*[P4/mcc\ m][.c.\ P_{c}4xy]
16n1*[P4/mcc\ n][.c.\ P_{c}4xy2z]
      
125 [{\bi P}{\bf 4}/{\bi n}{\bi b}{\bi m}]
2a422 [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c[\bar{4}2m] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4e[..2/m] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4f   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4g4.. [P4/mmm\ g]C2z
4h2.mm [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
8i..2 [P4/mmm\ l]C4xx
8j   [00{\textstyle{1 \over 2}}\ C4xx]
8k.2. [P4/mmm\ j]C4x
8l   [00{\textstyle{1 \over 2}}\ C4x]
8m..m*[P4/nbm\ m][0{\textstyle{1 \over 2}}0\ ..2\ C4xxz]
16n1*[P4/nbm\ n]..m C4x2yz
      
126 [{\bi P}{\bf 4}/{\bi n}{\bi n}{\bi c}]
2a422 [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c222. [P4/mmm\ a][{\textstyle{1 \over 2}}00\ C_{c}]
4d[\bar{4}..] [P4/mmm\ a][{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ C_{c}]
4e4.. [I4/mmm\ e]I2z
8f[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8g2.. [P4/mmm\ g][{\textstyle{1 \over 2}}00\ C_{c}2z]
8h..2 [I4/mmm\ h]I4xx
8i.2. [I4/mmm\ i]I4x
8j   [00{\textstyle{1 \over 2}}\ I4x]
16k1*[P4/nnc\ k]..c I4x2yz
      
127 [ {\bi P}{\bf 4}/{\bi m}{\bi b}{\bi m}]
2a[4/m..] [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2cm.mm [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 2}}\ C]
2d   [0{\textstyle{1 \over 2}}0\ C]
4e4.. [P4/mmm\ g]C2z
4f2.mm [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C2z]
4gm.2m*[P4/mbm\ g][0{\textstyle{1 \over 2}}0\ .b.\ C2xx]
4h   [0{\textstyle{1 \over 2}{1 \over 2}}\ .b.\ C2xx]
8im..*[P4/mbm\ i]..m C4xy
8j   [00{\textstyle{1 \over 2}}\ ..m\ C4xy]
8k..m*[P4/mbm\ k][0{\textstyle{1 \over 2}}0\ .b.\ C2xx2z]
16l1*[P4/mbm\ l]..m C4xy2z
      
128 [{\bi P}{\bf 4}/{\bi m}{\bi n}{\bi c}]
2a[4/m..] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c[ 2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e4.. [I4/mmm\ e]I2z
8f2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8g..2 [P4/mbm\ g][0{\textstyle{1 \over 2}{1 \over 4}}\ (.b.\ C2xx)_{c}]
8hm..*[P4/mnc\ h]..2 I4xy
16i1*[P4/mnc\ i]..2 I4xy2z
      
129 [ {\bi P}{\bf 4}/{\bi n}{\bi m}{\bi m}]
2a[\bar{4}m2] [P4/mmm\ a]C
2b   [00{\textstyle{1 \over 2}}\ C]
2c4mm*[P4/nmm\ c][0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4d[..2/m] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4e   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4f2mm. [P4/mmm\ g]C2z
8g..2 [P4/mmm\ l]C4xx
8h   [00{\textstyle{1 \over 2}}\ C4xx]
8i.m.*[P4/nmm\ i]..m C4xz
8j..m*[P4/nmm\ j][0{\textstyle{1 \over 2}}0\ ..2\ CI1z4xx]
16k1*[P4/nmm\ k]..m C4xz2y
      
130 [ {\bi P}{\bf 4}/{\bi n}{\bi c}{\bi c}]
4a2.22 [P4/mmm\ a][00{\textstyle{1 \over 4}}\ C_{c}]
4b[\bar{4}..] [P4/mmm\ a][C_{c}]
4c4.. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
8d[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8e2.. [P4/mmm\ g][C_{c}2z]
8f..2 [I4/mcm\ h][00{\textstyle{1 \over 4}}\ .b.\ C_{c}2xx]
16g1*[P4/ncc\ g][..c2\ C_{c}4xyz]
      
131 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}{\bi m}{\bi c}]
2a mmm. [P4/mmm\ a][P_{c}]
2b   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2cmmm. [I4/mmm\ a][0{\textstyle{1 \over 2}}0\ I]
2d   [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2e[\bar{4}m2] [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4g2mm. [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4i2mm. [I4/mmm\ e][0{\textstyle{1 \over 2}}0\ I2z]
4jm2m.*[P4_{2}/mmc\ j][..2\ P_{c}2x]
4k   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ ..2\ P_{c}2x]
4l   [00{\textstyle{1 \over 2}}\ ..2\ P_{c}2x]
4m   [{\textstyle{1 \over 2}{1 \over 2}}0\ ..2\ P_{c}2x]
8n..2 [P4/mmm\ j][00{\textstyle{1 \over 4}}\ P_{c}4xx]
8o.m.*[P4_{2}/mmc\ o][..c\ P_{c}2x2z]
8p   [{\textstyle{1 \over 2}{1 \over 2}}0\ ..c\ P_{c}2x2z]
8qm..*[P4_{2}/mmc\ q][..2\ P_{c}2x2y]
16r1*[P4_{2}/mmc\ r][..c\ P_{c}2x2y2z]
      
132 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}{\bi c}{\bi m}]
2am.mm [P4/mmm\ a][P_{c}]
2c   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2b[\bar{4}2m] [P4/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4e222. [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4f[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4g2.mm [P4/mmm\ g][P_{c}2z]
4h   [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4im.2m*[P4_{2}/mcm\ i][.2.\ P_{c}2xx]
4j   [00{\textstyle{1 \over 2}}\ .2.\ P_{c}2xx]
8k2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8l.2. [P4/mmm\ l][00{\textstyle{1 \over 4}}\ P_{c}4x]
8m   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}4x]
8nm..*[P4_{2}/mcm\ n][.2.\ P_{c}2xx2y]
8o..m*[P4_{2}/mcm\ o][.c.\ P_{c}2xx2z]
16p1*[P4_{2}/mcm\ p][.c.\ P_{c}2xx2y2z]
      
133 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}{\bi b}{\bi c}]
4a222. [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4b222. [P4/mmm\ a][00{\textstyle {1 \over 4}}\ C_{c}]
4c2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d[\bar{4}..] [P4/mmm\ a][C_{c}]
8e[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8f2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8g2.. [P4/mmm\ g][C_{c}2z]
8h.2. [P4_{2}/mcm\ i][00{\textstyle {1 \over 4}}\ ..2\ C_{c}2x]
8i   [00{\textstyle {3 \over 4}}\ ..2\ C_{c}2x]
8j..2 [I4/mcm\ h][0{\textstyle{1 \over 2}}0\ .b.\ C_{c}2xx]
16k1*[P4_{2}/nbc\ k][.22\ C_{c}4xyz]
      
134 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}{\bi n}{\bi m}]
2a[\bar{4}2m] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c222. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e[..2/m] [I4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4f   [{\textstyle {1 \over 4}{1 \over 4}{3 \over 4}}\ F]
4g2.mm [I4/mmm\ e]I2z
8h2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8i.2. [I4/mmm\ i]I4x
8j   [00{\textstyle{1 \over 2}}\ I4x]
8k..2 [P4_{2}/mmc\ j][0{\textstyle{1 \over 2}{1 \over 4}}\ .2.\ C_{c}2xx]
8l   [0{\textstyle{1 \over 2}}{3 \over 4}\ .2.\ C_{c}2xx]
8m..m*[P4_{2}/nnm\ m]..2 I4xxz
16n1*[P4_{2}/nnm\ n]..2 I4xxz2y
      
135 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}{\bi b}{\bi c}]
4a[2/m..] [P4/mmm\ a][C_{c}]
4b[\bar{4}..] [P4/mmm\ a][00{\textstyle {1 \over 4}}\ C_{c}]
4c[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d2.22 [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
8e2.. [P4/mmm\ g][C_{c}2z]
8f2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8g..2 [P4/mbm\ g][0{\textstyle{1 \over 2}{1 \over 4}}\ (.b.\ C2xx)_{c}]
8hm..*[P4_{2}/mbc\ h][.b2\ C_{c}2xy]
16i1*[P4_{2}/mbc\ i][.b2\ C_{c}2xy2z]
      
136 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}{\bi n}{\bi m}]
2am.mm [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c[2/m..] [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d[\bar{4} ..] [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e2.mm [I4/mmm\ e]I2z
4fm.2m*[P4_{2}/mnm\ f].n. I2xx
4g   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .n.\ I2xx]
8h2.. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8im..*[P4_{2}/mnm\ i].n. I2xx2y
8j..m*[P4_{2}/mnm\ j].n. I2xx2z
16k1*[P4_{2}/mnm\ k].n. I2xx2y2z
      
137 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}{\bi m}{\bi c}]
2a[\bar{4} m2] [I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4c2mm. [I4/mmm\ e]I2z
4d2mm. [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
8e[\bar{1}] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8f..2 [I4/mmm\ h]I4xx
8g.m.*[P4_{2}/nmc\ g]..c I4xz
16h1*[P4_{2}/nmc\ h]..c I4xz2y
      
138 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}{\bi c}{\bi m}]
4a2.22 [P4/mmm\ a][00{\textstyle {1 \over 4}}\ C_{c}]
4b[\bar{4} ..] [P4/mmm\ a][C_{c}]
4c[..2/m] [I4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4d   [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ F]
4e2.mm [P4/nmm\ c][0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
8f2.. [P4/mmm\ g][C_{c}2z]
8g..2 [P4_{2}/mmc\ j][00{\textstyle {1 \over 4}}\ .2.\ C_{c}2xx]
8h   [00{\textstyle {3 \over 4}}\ .2.\ C_{c}2xx]
8i..m*[P4_{2}/ncm\ i][{\textstyle{1 \over 4}{3 \over 4}{1 \over 4}}\ \bar{4}..\ F2xxz]
16j1*[P4_{2}/ncm\ j][..m2\ C_{c}4xyz]
      
139 [ {\bi I}{\bf 4}/{\bi m}{\bi m}{\bi m}]
2a[4/mmm]*[I4/mmm\ a]I
2b   [00{\textstyle{1 \over 2}}\ I]
4cmmm. [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
4d[\bar{4} m2] [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4e4mm*[I4/mmm\ e]I2z
8f[..2/m] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8g2mm. [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8hm.2m*[I4/mmm\ h]I4xx
8im2m.*[ I4/mmm\ i]I4x
8j   [{\textstyle{1 \over 2}{1 \over 2}}0\ I4x]
16k..2 [P4/mmm\ l][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}4xx]
16lm..*[I4/mmm\ l]I4x2y
16m..m*[I4/mmm\ m]I4xx2z
16n.m.*[I4/mmm\ n]I4x2z
32o1*[I4/mmm\ o]I4x2y2z
      
140 [{\bi I}{\bf 4}/{\bi m}{\bi c}{\bi m}]
4a422 [P4/mmm\ a][00{\textstyle {1 \over 4}}\ C_{c}]
4b[\bar{4} 2m] [P4/mmm\ a][0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4c[4/m..] [P4/mmm\ a][C_{c}]
4dm.mm [P4/mmm\ a][0{\textstyle{1 \over 2}}0\ C_{c}]
8e[..2/m] [P4/mmm\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8f4.. [P4/mmm\ g][C_{c}2z]
8g2.mm [P4/mmm\ g][0{\textstyle{1 \over 2}}0\ C_{c}2z]
8hm.2m*[I4/mcm\ h][0{\textstyle{1 \over 2}}0\ .b.\ C_{c}2xx]
16i..2 [P4/mmm\ l][00{\textstyle {1 \over 4}}\ C_{c}4xx]
16j.2. [P4/mmm\ j][00{\textstyle {1 \over 4}}\ C_{c}4x]
16km..*[I4/mcm\ k][..m\ C_{c}4xy]
16l..m*[I4/mcm\ l][0{\textstyle{1 \over 2}{1 \over 4}}\ .b.\ C_{c}4xxz]
32m1*[I4/mcm\ m][.c.\ C_{c}4xy2z]
      
141 [ {\bi I}{\bf 4}_{\bf 1}/{\bi a}{\bi m}{\bi d}]
4a[\bar{4}m2]*[I4_{1}/amd\ a][^{v}D]
4b   [00{\textstyle{1 \over 2}}\ ^{v}D]
8c[.2/m.]*[I4_{1}/amd\ c][^{v}T]
8d   [00{\textstyle{1 \over 2}}\ ^{v}T]
8e2mm.*[I4_{1}/amd\ e][^{v}D2z]
16f.2.*[I4_{1}/amd\ f][..2\ ^{v}T2x]
16g..2*[I4_{1}/amd\ g][^{v}D4xx]
16h.m.*[I4_{1}/amd\ h][.2.\ ^{v}D4xz]
32i1*[I4_{1}/amd\ i][.2.\ ^{v}D4xz2y]
      
142 [ {\bi I}{\bf 4}_{\bf 1}/{\bi a}{\bi c}{\bi d}]
8a[\bar{4}..] [I4/mmm\ a][F_{c}]
8b2.22 [I4/mmm\ a][00{\textstyle {1 \over 4}}\ F_{c}]
16c[\bar{1}] [I4/mmm\ a][0{\textstyle{1 \over 4}{1 \over 8}}\ I_{2}]
16d2.. [I4/mmm\ e][F_{c}2z]
16e.2.*[I4_{1}/acd\ e][0{\textstyle {1 \over 4}{3 \over 8}}\ \bar{4} ..\ I_{2} P_{c2}1x]
16f..2*[I4_{1}/acd\ f][00{\textstyle {1 \over 4}}\ .2.\ F_{c}2xx]
32g1*[I4_{1}/acd\ g][.22\ F_{c}4xyz]
      
143 P3
1a3.. [P6/mmm\ a]P[z]
1b   [{\textstyle{1 \over 3}{2 \over 3}}0\ P\hbox{[}z\hbox{]}]
1c   [{\textstyle{2 \over 3}{1 \over 3}}0\ P\hbox{[}z\hbox{]}]
3d1 [P\bar{6}\ j]P3xy[z]
      
144 [{\bi P}{\bf 3}_{\bf 1}]
3a1*[P3_{2}\ a][3_{1}..\ P_{C}R^{-}Q1xy\hbox{[}z\hbox{]}]
      
145 [{\bi P}{\bf 3}_{\bf 2}]
3a1*[P3_{2}\ a][3_{2}..\ P_{C}R^{+}Q1xy\hbox{[}z\hbox{]}]
      
146 R3 (Hexagonal axes)
3a3. [R\bar{3}m\ a]R[z]
9b1*[R3\ b]R3xy[z]
      
146 R3 (Rhombohedral axes)
1a3. [R\bar{3}m\ a]P[xxx]
3b1*[R3\ b]P3yz[xxx]
      
147 [ {\bi P}\bar{\bf 3}]
1a[\bar{3} ..] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c3.. [P6/mmm\ e]P2z
2d3.. [P\bar{3}m1\ d].2. GE1z
3e[\bar{1}] [P6/mmm\ f]N
3f   [00{\textstyle{1 \over 2}}\ N]
6g1*[P\bar{3}\ g]P6xyz
      
148 [{\bi R}\bar{\bf 3}] (Hexagonal axes)
3a[\bar{3}.] [R\bar{3}m\ a]R
3b   [00{\textstyle{1 \over 2}}\ R]
6c3. [R\bar{3}m\ c]R2z
9d[\bar{1}] [R\bar{3}m\ e][00{\textstyle{1 \over 2}}\ M]
9e   M
18f1*[R\bar{3}\ f]R6xyz
      
148 [ {\bi R}\bar{\bf 3}] (Rhombohedral axes)
1a[\bar{3} .] [R\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2c3. [R\bar{3}m\ c]P2xxx
3d[\bar{1}] [R\bar{3}m\ e][{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
3e   J
6f1*[R\bar{3}\ f]P6xyz
      
149 P312
1a3.2 [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 3}{2 \over 3}}0\ P]
1d   [{\textstyle{1 \over 3}{2 \over 3}{1 \over 2}}\ P]
1e   [{\textstyle{2 \over 3}{1 \over 3}}0\ P]
1f   [{\textstyle{2 \over 3}{1 \over 3}{1 \over 2}}\ P]
2g3.. [P6/mmm\ e]P2z
2h   [{\textstyle{1 \over 3}{2 \over 3}}0\ P2z]
2i   [{\textstyle{2 \over 3}{1 \over 3}}0\ P2z]
3j..2 [P\bar{6}m2\ j][P3x\bar{x}]
3k   [00{\textstyle{1 \over 2}}\ P3x\bar{x}]
6l1*[P312\ l][P3x\bar{x}2yz]
      
150 P321
1a32. [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c3.. [P6/mmm\ e]P2z
2d3.. [P\bar{3}m1\ d].2. GE1z
3e.2. [P\bar{6}2m\ f]P3x
3f   [00{\textstyle{1 \over 2}}\ P3x]
6g1*[P321\ g]P3x2yz
      
151 [{\bi P}{\bf 3}_{\bf 1}{\bf 12}]
3a..2*[P3_{2}12\ a][00{\textstyle{1 \over 3}}\ 3_{1}..\ P_{C}{^{-}Q}1x\bar{x}]
3b   [00{\textstyle{5 \over 6}}\ 3_{1}..\ P_{C}{^{-}Q}1x\bar{x}]
6c1*[P3_{2}12\ c][00{\textstyle{1 \over 3}}\ 3_{1}..\ P_{C}{^{-}Q}1x\bar{x}2yz]
      
152 [{\bi P}{\bf 3}_{\bf 1}{\bf 21}]
3a.2.*[P3_{2}21\ a][00{\textstyle{1 \over 3}}\ 3_{1}..\ P_{C}R^{-}Q1x]
3b   [00{\textstyle{5 \over 6}}\ 3_{1}..\ P_{C}R^{-}Q1x]
6c1*[P3_{2}21\ c][00{\textstyle{1 \over 3}}\ 3_{1}..\ P_{C}R^{-}Q1x2yz]
      
153 [{\bi P}{\bf 3}_{\bf 2}{\bf 12}]
3a..2*[P3_{2}12\ a][00{\textstyle{2 \over 3}}\ 3_{2}..\ P_{C}{^{+}Q}1x\bar{x}]
3b   [00{\textstyle{1 \over 6}}\ 3_{2}..\ P_{C}{^{+}Q}1x\bar{x}]
6c1*[P3_{2}12\ c][00{\textstyle{2 \over 3}}\ 3_{2}..\ P_{C}{^{+}Q}1x\bar{x}2yz]
      
154 [{\bi P}{\bf 3}_{\bf 2}{\bf 21}]
3a.2.*[P3_{2}21\ a][00{\textstyle{2 \over 3}}\ 3_{2}..\ P_{C}R^{+}Q1x]
3b   [00{\textstyle{1 \over 6}}\ 3_{2}..\ P_{C}R^{+}Q1x]
6c1*[P3_{2}21\ c][00{\textstyle{2 \over 3}}\ 3_{2}..\ P_{C}R^{+}Q1x2yz]
      
155 R32 (Hexagonal axes)
3a32 [R\bar{3}m\ a]R
3b   [00{\textstyle{1 \over 2}}\ R]
6c3. [R\bar{3}m\ c]R2z
9d.2*[R32\ d]R3x
9e   [00{\textstyle{1 \over 2}}\ R3x]
18f1*[R32\ f]R3x2yz
      
155 R32 (Rhombohedral axes)
1a32 [R\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2c3. [R\bar{3}m\ c]P2xxx
3d.2*[R32\ d][P3x\bar{x}]
3e   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P3x\bar{x}]
6f1*[R32\ f][P3x\bar{x}2yz]
      
156 P3m1
1a3m. [P6/mmm\ a]P[z]
1b   [{\textstyle{1 \over 3}{2 \over 3}}0\ P\hbox{[}z\hbox{]}]
1c   [{\textstyle{2 \over 3}{1 \over 3}}0\ P\hbox{[}z\hbox{]}]
3d.m. [P\bar{6}m2\ j][P3x\bar{x}\hbox{[}z\hbox{]}]
6e1 [P\bar{6}m2\ l][P3x\bar{x}2y\hbox{[}z\hbox{]}]
      
157 P31m
1a3.m [P6/mmm\ a]P[z]
2b3.. [P6/mmm\ c]G[z]
3c..m [P\bar{6}2m\ f]P3x[z]
6d1 [P\bar{6}2m\ j]P3x2y[z]
      
158 P3c1
2a3.. [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b   [{\textstyle{1 \over 3}{2 \over 3}}0\ P_{c}\hbox{[}z\hbox{]}]
2c   [{\textstyle{2 \over 3}{1 \over 3}}0\ P_{c}\hbox{[}z\hbox{]}]
6d1 [P\bar{6}c2\ k][..2\ P_{c}3xy\hbox{[}z\hbox{]}]
      
159 P31c
2a3.. [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b3.. [P6_{3}/mmc\ c]E[z]
6c1 [P\bar{6}2c\ h][.2.\ P_{c}3xy\hbox{[}z\hbox{]}]
      
160 R3m (Hexagonal axes)
3a3m [R\bar{3}m\ a]R[z]
9b.m*[R3m\ b][R3x\bar{x}\hbox{[}z\hbox{]}]
18c1*[R3m\ c][R3x\bar{x}2y\hbox{[}z\hbox{]}]
      
160 R3m (Rhombohedral axes)
1a3m [R\bar{3}m\ a]P[xxx]
3b.m*[R3m\ b]P3z[xxx]
6c1*[R3m\ c]P3z2y[xxx]
      
161 R3c (Hexagonal axes)
6a3. [R\bar{3}m\ a][^{'}\!R_{c}\hbox{[}z\hbox{]}]
18b1*[R3c\ b][.c\ ^{'}\!R_{c}3xy\hbox{[}z\hbox{]}]
      
161 R3c (Rhombohedral axes)
2a3. [R\bar{3}m\ a]I[xxx]
6b1*[R3c\ b].n I3yz[xxx]
      
162 [ {\bi P}\bar{\bf 3}{\bf 1}{\bi m}]
1a[\bar{3} .m] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c3.2 [P6/mmm\ c]G
2d   [00{\textstyle{1 \over 2}}\ G]
2e3.m [P6/mmm\ e]P2z
3f[..2/m] [P6/mmm\ f]N
3g   [00{\textstyle{1 \over 2}}\ N]
4h3.. [P6/mmm\ h]G2z
6i..2 [P6/mmm\ l][P6x\bar{x}]
6j   [00{\textstyle{1 \over 2}}\ P6x\bar{x}]
6k..m*[P\bar{3}1m\ k]P6xz
12l1*[P\bar{3}1m\ l]P6xz2y
      
163 [ {\bi P}\bar{\bf 3}{\bf 1}{\bi c}]
2a3.2 [P6/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2b[\bar{3}..] [P6/mmm\ a][P_{c}]
2c3.2 [P6_{3}/mmc\ c]E
2d   [00{\textstyle{1 \over 2}}\ E]
4e3.. [P6/mmm\ e][P_{c}2z]
4f3.. [P6_{3}/mmc\ f]E2z
6g[\bar{1}] [P6/mmm\ f][N_{c}]
6h..2 [P6_{3}/mmc\ h][00{\textstyle {1 \over 4}}\ .2.\ P_{c}3x\bar{x}]
12i1*[P\bar{3}1c\ i][..c\ P_{c}6xyz]
      
164 [ {\bi P}\bar{\bf 3}{\bi m}{\bf 1}]
1a[\bar{3}m.] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c3m. [P6/mmm\ e]P2z
2d3m.*[P\bar{3}m1\ d].2. GE1z
3e[.2/m.] [P6/mmm\ f]N
3f   [00{\textstyle{1 \over 2}}\ N]
6g.2. [P6/mmm\ j]P6x
6h   [00{\textstyle{1 \over 2}}\ P6x]
6i.m.*[P\bar{3}m1\ i][P6x\bar{x}z]
12j1*[P\bar{3}m1\ j][P6x\bar{x}z2y]
      
165 [{\bi P}\bar{\bf 3}{\bi c}{\bf 1}]
2a32. [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2b[\bar{3}..] [P6/mmm\ a][P_{c}]
4c3.. [P6/mmm\ e][P_{c}2z]
4d3.. [P\bar{3}m1\ d][(.2.\ GE1z)_{c}]
6e[\bar{1}] [P6/mmm\ f][N_{c}]
6f.2. [P6_{3}/mcm\ g][00{\textstyle {1 \over 4}}\ ..2\ P_{c}3x]
12g1*[P\bar{3}c1\ g][.c.\ P_{c}6xyz]
      
166 [ {\bi R}\bar{\bf 3}{\bi m}](Hexagonal axes)
3a[\bar{3}m]*[R\bar{3}m\ a]R
3b   [00{\textstyle{1 \over 2}}\ R]
6c3m*[R\bar{3}m\ c]R2z
9e[.2/m]*[R\bar{3}m\ e]M
9d   [00{\textstyle{1 \over 2}}\ M]
18f.2*[R\bar{3}m\ f]R6x
18g   [00{\textstyle{1 \over 2}}\ R6x]
18h.m*[R\bar{3}m\ h][R6x\bar{x}z]
36i1*[R\bar{3}m\ i][R6x\bar{x}z2y]
      
166 [{\bi R}\bar{\bf 3}{\bi m}] (Rhombohedral axes)
1a[\bar{3}m]*[R\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2c3m*[R\bar{3}m\ c]P2xxx
3e[.2/m]*[R\bar{3}m\ e]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
6f.2*[R\bar{3}m\ f][P6x\bar{x}]
6g   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6x\bar{x}]
6h.m*[R\bar{3}m\ h]P6xxz
12i1*[R\bar{3}m\ i]P6xxz2y
      
167 [ {\bi R}\bar{\bf 3}{\bi c}] (Hexagonal axes)
6a32 [R\bar{3}m\ a][00{\textstyle {1 \over 4}}\ ^{'}\!R_{c}]
6b[\bar{3}.] [R\bar{3}m\ a][^{'}\!R_{c}]
12c3. [R\bar{3}m\ c][^{'}\!R_{c}2z]
18d[\bar{1}] [R\bar{3}m\ e][^{'}\!M_{c}]
18e.2*[R\bar{3} c\ e][00{\textstyle {1 \over 4}}\ .c\ ^{'}\!R_{c}3x]
36f1*[R\bar{3} c\ f][.c\ ^{'}\!R_{c}6xyz]
      
167 [ {\bi R}\bar{\bf 3}{\bi c}] (Rhombohedral axes)
2a32 [R\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ I]
2b[\bar{3}.] [R\bar{3}m\ a]I
4c3. [R\bar{3}m\ c]I2xxx
6d[\bar{1}] [R\bar{3}m\ e][J^{*}]
6e.2*[R\bar{3} c\ e][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ .n\ I3x\bar{x}]
12f1*[R\bar{3} c\ f].n I6xyz
      
168 P6
1a6.. [P6/mmm\ a]P[z]
2b3.. [P6/mmm\ c]G[z]
3c2.. [P6/mmm\ f]N[z]
6d1 [P6/m\ j]P6xy[z]
      
169 [ {\bi P}{\bf 6}_{\bf 1}]
6a1*[P6_{1}\ a][3_{1}2_{1}..\ P_{Cc}E_{C}{^{+}Q}_{c}1xy\hbox{[}z\hbox{]}]
      
170 [ {\bi P}{\bf 6}_{\bf 5}]
6a1*[P6_{1}a][3_{2}2_{1}..\ P_{Cc}E_{C}{^{-}Q}_{c}1xy\hbox{[}z\hbox{]}]
      
171 [{\bi P}{\bf 6}_{\bf 2}]
3a2.. [P6/mmm\ a][P_{C}\hbox{[}z\hbox{]}]
3b2.. [P6_{2}22\ c][^{+}Q\hbox{[}z\hbox{]}]
6c1*[P6_{2}\ c][3_{2}..\ P_{C}2xy\hbox{[}z\hbox{]}]
      
172 [{\bi P}{\bf 6}_{\bf 4}]
3a2.. [P6/mmm\ a][P_{C}\hbox{[}z\hbox{]}]
3b2.. [P6_{2}22\ c][^{-}Q\hbox{[}z\hbox{]}]
6c1*[P6_{2}\ c][3_{1}..\ P_{C}2xy\hbox{[}z\hbox{]}]
      
173 [{\bi P}{\bf 6}_{\bf 3}]
2a3.. [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b3.. [P6_{3}/mmc\ c]E[z]
6c1 [P6_{3}/m\ h][2_{1}..\ P_{c}3xy\hbox{[}z\hbox{]}]
      
174 [{\bi P}\bar{\bf 6}]
1a[\bar{6}..] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 3}{2 \over 3}}0\ P]
1d   [{\textstyle{1 \over 3}{2 \over 3}{1 \over 2}}\ P]
1e   [{\textstyle{2 \over 3}{1 \over 3}}0\ P]
1f   [{\textstyle{2 \over 3}{1 \over 3}{1 \over 2}}\ P]
2g3.. [P6/mmm\ e]P2z
2h   [{\textstyle{1 \over 3}{2 \over 3}}0\ P2z]
2i   [{\textstyle{2 \over 3}{1 \over 3}}0\ P2z]
3jm..*[P\bar{6}\ j]P3xy
3k   [00{\textstyle{1 \over 2}}\ P3xy]
6l1*[P\bar{6}\ l]P3xy2z
      
175 [{\bi P}{\bf 6}/{\bi m}]
1a[6/m..] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c[\bar{6}..] [P6/mmm\ c]G
2d   [00{\textstyle{1 \over 2}}\ G]
2e6.. [P6/mmm\ e]P2z
3f[2/m..] [P6/mmm\ f]N
3g   [00{\textstyle{1 \over 2}}\ N]
4h3.. [P6/mmm\ h]G2z
6i2.. [P6/mmm\ i]N2z
6jm..*[P6/m\ j]P6xy
6k   [00{\textstyle{1 \over 2}}\ P6xy]
12l1*[P6/m\ l]P6xy2z
      
176 [{\bi P}{\bf 6}_{\bf 3}/{\bi m}]
2a[\bar{6}..] [P6/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2b[\bar{3}..] [P6/mmm\ a][P_{c}]
2c[\bar{6}..] [P6_{3}/mmc\ c]E
2d   [00{\textstyle{1 \over 2}}\ E]
4e3.. [P6/mmm\ e][P_{c}2z]
4f3.. [P6_{3}/mmc\ f]E2z
6g[\bar{1}] [P6/mmm\ f][N_{c}]
6hm..*[P6_{3}/m\ h][00{\textstyle {1 \over 4}}\ 2_{1}..\ P_{c}3xy]
12i1*[P6_{3}/m\ i][m..\ P_{c}6xyz]
      
177 P622
1a622 [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c3.2 [P6/mmm\ c]G
2d   [00{\textstyle{1 \over 2}}\ G]
2e6.. [P6/mmm\ e]P2z
3f222 [P6/mmm\ f]N
3g   [00{\textstyle{1 \over 2}}\ N]
4h3.. [P6/mmm\ h]G2z
6i2.. [P6/mmm\ i]N2z
6j.2. [P6/mmm\ j]P6x
6k   [00{\textstyle{1 \over 2}}\ P6x]
6l..2 [P6/mmm\ l][P6x\bar{x}]
6m   [00{\textstyle{1 \over 2}}\ P6x\bar{x}]
12n1*[P622\ n]P6x2yz
      
178 [{\bi P}{\bf 6}_{\bf 1}{\bf 22}]
6a.2.*[P6_{1}22\ a][3_{1}.2\ P_{Cc}{^{+}Q}_{c}1x]
6b..2*[P6_{1}22\ b][00{\textstyle{11 \over 12}}\ 3_{1}2.\ P_{Cc}E_{C}{^{+}Q}_{c}1x\bar{x}]
12c1*[P6_{1}22\ c][3_{1}.2\ P_{Cc}{^{+}Q}_{c}1x2yz]
      
179 [{\bi P}{\bf 6}_{\bf 5}{\bf 22}]
6a.2.*[P6_{1}22\ a][3_{2}.2\ P_{Cc}{^{-}Q}_{c}1x]
6b..2*[P6_{1}22\ b][00{\textstyle{1 \over 12}}\ 3_{2}2.\ P_{Cc}E_{C}{^{-}Q}_{c}1x\bar{x}]
12c1*[P6_{1}22\ c][3_{2}.2\ P_{Cc}{^{-}Q}_{c}1x2yz]
      
180 [{\bi P}{\bf 6}_{\bf 2}{\bf 22}]
3a222 [P6/mmm\ a][P_{C}]
3b   [00{\textstyle{1 \over 2}}\ P_{C}]
3c222*[P6_{2}22\ c][^{+}Q]
3d   [00{\textstyle{1 \over 2}}\ ^{+}Q]
6e2.. [P6/mmm\ e][P_{C}2z]
6f2..*[P6_{2}22\ f][^{+}Q2z]
6g.2.*[P6_{2}22\ g][3_{2}..\ P_{C}2x]
6h   [00{\textstyle{1 \over 2}}\ 3_{2}..\ P_{C}2x]
6i..2*[P6_{2}22\ i][00{\textstyle{1 \over 3}}\ 3_{2}..\ P_{C}2x\bar{x}]
6j   [00{\textstyle{5 \over 6}}\ 3_{2}..\ P_{C}2x\bar{x}]
12k1*[P6_{2}22\ k][3_{2}..\ P_{C}2x2yz]
      
181 [{\bi P}{\bf 6}_{\bf 4}{\bf 22}]
3a222 [P6/mmm\ a][P_{C}]
3b   [00{\textstyle{1 \over 2}}\ P_{C}]
3c222*[P6_{2}22\ c][^{-}Q]
3d   [00{\textstyle{1 \over 2}}\ ^{-}Q]
6e2.. [P6/mmm\ e][P_{C}2z]
6f2..*[P6_{2}22\ f][^{-}Q2z]
6g.2.*[P6_{2}22\ g][3_{1}..\ P_{C}2x]
6h   [00{\textstyle{1 \over 2}}\ 3_{1}..\ P_{C}2x]
6i..2*[P6_{2}22\ i][00{\textstyle{2 \over 3}}\ 3_{1}..\ P_{C}2x\bar{x}]
6j   [00{\textstyle{1 \over 6}}\ 3_{1}..\ P_{C}2x\bar{x}]
12k1*[P6_{2}22\ k][3_{1}..\ P_{C}2x2yz]
      
182 [{\bi P}{\bf 6}_{\bf 3}{\bf 22}]
2a32. [P6/mmm\ a][P_{c}]
2b3.2 [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2c3.2 [P6_{3}/mmc\ c]E
2d   [00{\textstyle{1 \over 2}}\ E]
4e3.. [P6/mmm\ e][P_{c}2z]
4f3.. [P6_{3}/mmc\ f]E2z
6g.2. [P6_{3}/mcm\ g][..2\ P_{c}3x]
6h..2 [P6_{3}/mmc\ h][00{\textstyle {1 \over 4}}\ .2.\ P_{c}3x\bar{x}]
12i1*[P6_{3}22\ i][..2\ P_{c}3x2yz]
      
183 P6mm
1a6mm [P6/mmm\ a]P[z]
2b3m. [P6/mmm\ c]G[z]
3c2mm [P6/mmm\ f]N[z]
6d..m [P6/mmm\ j]P6x[z]
6e.m. [P6/mmm\ l][P6x\bar{x}\hbox{[}z\hbox{]}]
12f1 [P6/mmm\ p]P6x2y[z]
      
184 P6cc
2a6.. [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
4b3.. [P6/mmm\ c][G_{c}\hbox{[}z\hbox{]}]
6c2.. [P6/mmm\ f][N_{c}\hbox{[}z\hbox{]}]
12d1 [P6/mcc\ l][.c.\ P_{c}6xy\hbox{[}z\hbox{]}]
      
185 [{\bi P}{\bf 6}_{\bf 3}{\bi c}{\bi m}]
2a3.m [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
4b3.. [P6/mmm\ c][G_{c}\hbox{[}z\hbox{]}]
6c..m [P6_{3}/mcm\ g][..2\ P_{c}3x\hbox{[}z\hbox{]}]
12d1 [P6_{3}/mcm\ j][..2\ P_{c}3x2y\hbox{[}z\hbox{]}]
      
186 [{\bi P}{\bf 6}_{\bf 3}{\bi m}{\bi c}]
2a3m. [P6/mmm\ a][P_{c}\hbox{[}z\hbox{]}]
2b3m. [P6_{3}/mmc\ c]E[z]
6c.m. [P6_{3}/mmc\ h][.2.\ P_{c}3x\bar{x}\hbox{[}z\hbox{]}]
12d1 [P6_{3}/mmc\ j][.2.\ P_{c}3x\bar{x}2y\hbox{[}z\hbox{]}]
      
187 [{\bi P}\bar{\bf 6}{\bi m}{\bf 2}]
1a[\bar{6}m2] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
1c   [{\textstyle{1 \over 3}{2 \over 3}}0\ P]
1d   [{\textstyle{1 \over 3}{2 \over 3}{1 \over 2}}\ P]
1e   [{\textstyle{2 \over 3}{1 \over 3}}0\ P]
1f   [{\textstyle{2 \over 3}{1 \over 3}{1 \over 2}}\ P]
2g3m. [P6/mmm\ e]P2z
2h   [{\textstyle{1 \over 3}{2 \over 3}}0\ P2z]
2i   [{\textstyle{2 \over 3}{1 \over 3}}0\ P2z]
3jmm2*[P\bar{6}m2\ j][P3x\bar{x}]
3k   [00{\textstyle{1 \over 2}}\ P3x\bar{x}]
6lm..*[P\bar{6}m2\ l][P3x\bar{x}2y]
6m   [00{\textstyle{1 \over 2}}\ P3x\bar{x}2y]
6n.m.*[P\bar{6}m2\ n][P3x\bar{x}2z]
12o1*[P\bar{6}m2\ o][P3x\bar{x}2y2z]
      
188 [{\bi P}\bar{\bf 6}{\bi c}{\bf 2}]
2a3.2 [P6/mmm\ a][P_{c}]
2c   [{\textstyle{1 \over 3}{2 \over 3}}0\ P_{c}]
2e   [{\textstyle{2 \over 3}{1 \over 3}}0\ P_{c}]
2b[\bar{6}..] [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2d   [{\textstyle{1 \over 3}{2 \over 3}{1 \over 4}}\ P_{c}]
2f   [{\textstyle{2 \over 3}{1 \over 3}{1 \over 4}}\ P_{c}]
4g3.. [P6/mmm\ e][P_{c}2z]
4h   [{\textstyle{1 \over 3}{2 \over 3}}0\ P_{c}2z]
4i   [{\textstyle{2 \over 3}{1 \over 3}}0\ P_{c}2z]
6j..2 [P\bar{6}m2\ j][P_{c}3x\bar{x}]
6km..*[P\bar{6}c2\ k][00{\textstyle {1 \over 4}}\ ..2\ P_{c}3xy]
12l1*[P\bar{6}c2\ l][m..\ P_{c}3x\bar{x}2yz]
      
189 [{\bi P}\bar{\bf 6}{\bf 2}{\bi m}]
1a[\bar{6}2m] [P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c[\bar{6}..] [P6/mmm\ c]G
2d   [00{\textstyle{1 \over 2}}\ G]
2e3.m [P6/mmm\ e]P2z
3fm2m*[P\bar{6}2m\ f]P3x
3g   [00{\textstyle{1 \over 2}}\ P3x]
4h3.. [P6/mmm\ h]G2z
6i..m*[P\bar{6}2m\ i]P3x2z
6jm..*[P\bar{6}2m\ j]P3x2y
6k   [00{\textstyle{1 \over 2}}\ P3x2y]
12l1*[P\bar{6}2m\ l]P3x2y2z
      
190 [{\bi P}\bar{\bf 6}{\bf 2}{\bi c}]
2a32. [P6/mmm\ a][P_{c}]
2b[\bar{6}..] [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2c[\bar{6}..] [P6_{3}/mmc\ c]E
2d   [00{\textstyle{1 \over 2}}\ E]
4e3.. [P6/mmm\ e][P_{c}2z]
4f3.. [P6_{3}/mmc\ f]E2z
6g.2. [P\bar{6}2m\ f][P_{c}3x]
6hm..*[P\bar{6}2c\ h][00{\textstyle {1 \over 4}}\ .2.\ P_{c}3xy]
12i1*[P\bar{6}2c\ i][m..\ P_{c}3x2yz]
      
191 [{\bi P}{\bf 6}/{\bi m}{\bi m}{\bi m}]
1a[6/mmm]*[P6/mmm\ a]P
1b   [00{\textstyle{1 \over 2}}\ P]
2c[\bar{6}m2]*[P6/mmm\ c]G
2d   [00{\textstyle{1 \over 2}}\ G]
2e6mm*[P6/mmm\ e]P2z
3fmmm*[P6/mmm\ f]N
3g   [00{\textstyle{1 \over 2}}\ N]
4h3m.*[P6/mmm\ h]G2z
6i2mm*[P6/mmm\ i]N2z
6jm2m*[P6/mmm\ j]P6x
6k   [00{\textstyle{1 \over 2}}\ P6x]
6lmm2*[P6/mmm\ l][P6x\bar{x}]
6m   [00{\textstyle{1 \over 2}}\ P6x\bar{x}]
12n..m*[P6/mmm\ n]P6x2z
12o.m.*[P6/mmm\ o][P6x\bar{x}2z]
12pm..*[P6/mmm\ p]P6x2y
12q   [00{\textstyle{1 \over 2}}\ P6x2y]
24r1*[P6/mmm\ r]P6x2y2z
      
192 [{\bi P}{\bf 6}/{\bi m}{\bi c}{\bi c}]
2a622 [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2b[6/m..] [P6/mmm\ a][P_{c}]
4c3.2 [P6/mmm\ c][00{\textstyle {1 \over 4}}\ G_{c}]
4d[\bar{6}..] [P6/mmm\ c][G_{c}]
4e6.. [P6/mmm\ e][P_{c}2z]
6f222 [P6/mmm\ f][00{\textstyle {1 \over 4}}\ N_{c}]
6g[2/m..] [P6/mmm\ f][N_{c}]
8h3.. [P6/mmm\ h][G_{c}2z]
12i2.. [P6/mmm\ i][N_{c}2z]
12j.2. [P6/mmm\ j][00{\textstyle {1 \over 4}}\ P_{c}6x]
12k..2 [P6/mmm\ l][00{\textstyle {1 \over 4}}\ P_{c}6x\bar{x}]
12lm..*[P6/mcc\ l][.c.\ P_{c}6xy]
24m1*[P6/mcc\ m][.c.\ P_{c}6xy2z]
      
193 [{\bi P}{\bf 6}_{\bf 3}/{\bi m}{\bi c}{\bi m}]
2a[\bar{6}2m] [P6/mmm\ a][00{\textstyle{1 \over 4}}\ P_{c}]
2b[\bar{3} .m] [P6/mmm\ a][P_{c}]
4c[\bar{6}..] [P6/mmm\ c][00{\textstyle{1 \over 4}}\ G_{c}]
4d3.2 [P6/mmm\ c][G_{c}]
4e3.m [P6/mmm\ e][P_{c}2z]
6f[..2/m] [P6/mmm\ f][N_{c}]
6gm2m*[P6_{3}/mcm\ g][00{\textstyle {1 \over 4}}\ ..2\ P_{c}3x]
8h3.. [P6/mmm\ h][G_{c}2z]
12i..2 [P6/mmm\ l][P_{c}6x\bar{x}]
12jm..*[P6_{3}/mcm\ j][00{\textstyle {1 \over 4}}\ ..2\ P_{c}3x2y]
12k..m*[P6_{3}/mcm\ k][m..\ P_{c}6xz]
24l1*[P6_{3}/mcm\ l][m..\ P_{c}6xz2y]
      
194 [{\bi P}{\bf 6}_{\bf 3}/{\bi m}{\bi m}{\bi c}]
2a[\bar{3}m.] [P6/mmm\ a][P_{c}]
2b[\bar{6}m2] [P6/mmm\ a][00{\textstyle {1 \over 4}}\ P_{c}]
2c[\bar{6}m2]*[P6_{3}/mmc\ c]E
2d   [00{\textstyle{1 \over 2}}\ E]
4e3m. [P6/mmm\ e][P_{c}2z]
4f3m.*[P6_{3}/mmc\ f]E2z
6g[.2/m.] [P6/mmm\ f][N_{c}]
6hmm2*[P6_{3}/mmc\ h][00{\textstyle {1 \over 4}}\ .2.\ P_{c}3x\bar{x}]
12i.2. [P6/mmm\ j][P_{c}6x]
12jm..*[P6_{3}/mmc\ j][00{\textstyle {1 \over 4}}\ .2.\ P_{c}3x\bar{x}2y]
12k.m.*[P6_{3}/mmc\ k][m..\ P_{c}6x\bar{x}z]
24l1*[P6_{3}/mmc\ l][m..\ P_{c}6x\bar{x}z2y]
      
195 P23
1a23. [Pm\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
3c222.. [Pm\bar{3}m\ c]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
4e.3. [P\bar{4}3m\ e]P4xxx
6f2.. [Pm\bar{3}m\ e]P6z
6i   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z]
6g2.. [Pm\bar{3}\ f].3. J2x
6h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .3.\ J2x]
12j1*[P23\ j]P6z2xy
      
196 F23
4a23. [Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
4c   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4d   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
16e.3. [F\bar{4}3m\ e]F4xxx
24f2.. [Fm\bar{3}m\ e]F6z
24g   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F6z]
48h1*[F23\ h]F6z2xy
      
197 I23
2a23. [Im\bar{3}m\ a]I
6b222.. [Im\bar{3}m\ b][J^{*}]
8c.3. [I\bar{4}3m\ c]I4xxx
12d2.. [Im\bar{3}m\ e]I6z
12e2.. [Im\bar{3}\ e][.3.\ J^{*}2x]
24f1*[I23\ f]I6z2xy
      
198 [{\bi P}{\bf 2}_{\bf 1}{\bf 3}]
4a.3.*[P2_{1}3\ a][2_{1}2_{1}..\ FY1xxx]
12b1*[P2_{1}3\ b][2_{1}2_{1}..\ FY1xxx3yz]
      
199 [{\bi I}{\bf 2}_{\bf 1}{\bf 3}]
8a.3.*[I2_{1}3\ a][2_{1}2_{1}..\ P_{2}Y^{*}1xxx]
12b2..*[I2_{1}3\ b][2_{1}3.\ SV1z]
24c1*[I2_{1}3\ c][2_{1}2_{1}..\ P_{2}Y^{*} 1xxx3yz]
      
200 [{\bi P}{\bi m}\bar{\bf 3}]
1a[m\bar{3}.] [Pm\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
3cmmm.. [Pm\bar{3}m\ c]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
6emm2.. [Pm\bar{3}m\ e]P6z
6h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z]
6fmm2..*[Pm\bar{3}\ f].3. J2x
6g   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .3.\ J2x]
8i.3. [Pm\bar{3}m\ g]P8xxx
12jm..*[Pm\bar{3}\ j]P6z2x
12k   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z2x]
24l1*[Pm\bar{3}\ l]P6z2x2y
      
201 [{\bi P}{\bi n}\bar{\bf 3}]
2a23. [Im\bar{3}m\ a]I
4b[.\bar{3}.] [Fm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4c   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
6d222.. [Im\bar{3}m\ b][J^{*}]
8e.3. [Pn\bar{3}m\ e]..2 I4xxx
12f2.. [Im\bar{3}m\ e]I6z
12g2.. [Im\bar{3}\ e][.3.\ J^{*}2x]
24h1*[Pn\bar{3}\ h]n.. I6z2xy
      
202 [{\bi F}{\bi m}\bar{\bf 3}]
4a[m\bar{3}.] [Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
8c23. [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
24d[2/m..] [Pm\bar{3}m\ c][J_{2}]
24emm2.. [Fm\bar{3}m\ e]F6z
32f.3. [Fm\bar{3}m\ f]F8xxx
48g2.. [Pm\bar{3}m\ e][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}6z]
48hm..*[Fm\bar{3}\ h]F6z2x
96i1*[Fm\bar{3}\ i]F6z2x2y
      
203 [{\bi Fd}\bar{\bf 3}]
8a23. [Fd\bar{3}m\ a]D
8b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ D]
16c[.\bar{3}.] [Fd\bar{3}m\ c]T
16d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ T]
32e.3. [Fd\bar{3}m\ e]..2 D4xxx
48f2.. [Fd\bar{3}m\ f]D6z
96g1*[Fd\bar{3}\ g]d.. D6z2xy
      
204 [{\bi I}{\bi m}\bar{\bf 3}]
2a[m\bar{3}.] [Im\bar{3}m\ a]I
6bmmm.. [Im\bar{3}m\ b][J^{*}]
8c[.\bar{3}.] [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
12dmm2.. [Im\bar{3}m\ e]I6z
12emm2..*[Im\bar{3}\ e][.3.\ J^{*}2x]
16f.3. [Im\bar{3}m\ f]I8xxx
24gm..*[Im\bar{3}\ g]I6z2x
48h1*[Im\bar{3}\ h]I6z2x2y
      
205 [{\bi P}{\bi a}\bar{\bf 3}]
4a[.\bar{3}.] [Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
8c.3.*[Pa\bar{3}\ c]bc.. F2xxx
24d1*[Pa\bar{3}\ d]bc.. F6xyz
      
206 [{\bi I}{\bi a}\bar{\bf 3}]
8a[.\bar{3}.] [Pm\bar{3}m\ a][P_{2}]
8b   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
16c.3.*[Ia\bar{3}\ c][22..\ P_{2}2xxx]
24d2..*[Ia\bar{3}\ d][.\bar{3}.\ J_{2}S^{*}V^{*}1x]
48e1*[Ia\bar{3}\ e][22..\ P_{2}6xyz]
      
207 P432
1a432 [Pm\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
3c42.2 [Pm\bar{3}m\ c]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
6e4.. [Pm\bar{3}m\ e]P6z
6f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z]
8g.3. [Pm\bar{3}m\ g]P8xxx
12h2.. [Pm\bar{3}m\ h].3. J4x
12i..2 [Pm\bar{3}m\ i]P12xx
12j   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P12xx]
24k1*[P432\ k]P6z4xy
      
208 [{\bi P}{\bf 4}_{\bf 2}{\bf 32}]
2a23. [Im\bar{3}m\ a]I
4b.32 [Fm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4c   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
6d222.. [Im\bar{3}m\ b][J^{*}]
6e2.22 [Pm\bar{3}n\ c]W
6f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ W]
8g.3. [Pn\bar{3}m\ e]..2 I4xxx
12h2.. [Im\bar{3}m\ e]I6z
12i2.. [Pm\bar{3}n\ g].3. W2z
12j   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .3.\ W2z]
12k..2*[P4_{2}32\ k][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ 4_{2}..\ F3x\bar{x}]
12l   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ 4_{2}..\ F3x\bar{x}]
24m1*[P4_{2}32\ m]..2 I6z2xy
      
209 F432
4a432 [Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
8c23. [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
24d2.22 [Pm\bar{3}m\ c][J_{2}]
24e4.. [Fm\bar{3}m\ e]F6z
32f.3. [Fm\bar{3}m\ f]F8xxx
48g..2 [Fm\bar{3}m\ h]F12xx
48h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F12xx]
48i2.. [Pm\bar{3}m\ e][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}6z]
96j1*[F432\ j]F6z4xy
      
210 [{\bi F}{\bf 4}_{\bf 1}{\bf 32}]
8a23. [Fd\bar{3}m\ a]D
8b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ D]
16c.32 [Fd\bar{3}m\ c]T
16d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ T]
32e.3. [Fd\bar{3}m\ e]..2 D4xxx
48f2.. [Fd\bar{3}m\ f]D6z
48g..2*[F4_{1}32\ g][22..\ T3x\bar{x}]
96h1*[F4_{1}32\ h]..2 D6z2xy
      
211 I432
2a432 [Im\bar{3}m\ a]I
6b42.2 [Im\bar{3}m\ b][J^{*}]
8c.32 [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
12d2.22 [Im\bar{3}m\ d][W^{*}]
12e4.. [Im\bar{3}m\ e]I6z
16f.3. [Im\bar{3}m\ f]I8xxx
24g2.. [Im\bar{3}m\ g][.3.\ J^{*}4x]
24h..2 [Im\bar{3}m\ h]I12xx
24i..2*[I432\ i][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ 4..\ P_{2}3x\bar{x}]
48j1*[I432\ j]I6z4xy
      
212 [{\bi P}{\bf 4}_{\bf 3}{\bf 32}]
4a.32*[P4_{3}32\ a][^{+}Y]
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ ^{+}Y]
8c.3.*[P4_{3}32\ c][4_{3}..\ ^{+}Y2xxx]
12d..2*[P4_{3}32\ d][4_{3}..\ ^{ +}Y3x\bar{x}]
24e1*[P4_{3}32\ e][4_{3}..\ ^{+}Y3x\bar{x}2yz]
      
213 [{\bi P}{\bf 4}_{\bf 1}{\bf 32}]
4a.32*[P4_{3}32\ a][{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ ^{-}Y]
4b   [^{-}Y]
8c.3.*[P4_{3}32\ c][4_{1}..\ ^{-}Y2xxx]
12d..2*[P4_{3}32\ d][4_{1}..\ ^{-}Y3x\bar{x}]
24e1*[P4_{3}32\ e][4_{1}..\ ^{-}Y3x\bar{x}2yz]
      
214 [{\bi I}{\bf 4}_{\bf 1}{\bf 32}]
8a.32*[I4_{1}32\ a][^{+}Y^{*}]
8b   [^{-}Y^{*}]
12c2.22*[I4_{1}32\ c][^{+}V]
12d   [^{-}V]
16e.3.*[I4_{1}32\ e][22..\ Y^{*}2xxx]
24f2..*[I4_{1}32\ f].3. V2z
24h..2*[I4_{1}32\ h][4_{3}..\ ^{+}Y^{*}3x\bar{x}]
24g   [4_{1}..\ ^{-}Y^{*}3x\bar{x}]
48i1*[I4_{1}32\ i][22..\ Y^{*}3x\bar{x}2yz]
      
215 [{\bi P}\bar{\bf 4}{\bf 3}{\bi m}]
1a[\bar{4}3m] [Pm\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
3c[\bar{4}2.m] [Pm\bar{3}m\ c]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
4e.3m*[P\bar{4}3m\ e]P4xxx
6f2.mm [Pm\bar{3}m\ e]P6z
6g   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z]
12h2.. [Pm\bar{3}m\ h].3. J4x
12i..m*[P\bar{4}3m\ i]P6z2xx
24j1*[P\bar{4}3m\ j]P6z2xx2y
      
216 [{\bi F}\bar{\bf 4}{\bf 3}{\bi m}]
4a[\bar{4}3m] [Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
4c   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4d   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
16e.3m*[F\bar{4}3m\ e]F4xxx
24f2.mm [Fm\bar{3}m\ e]F6z
24g   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F6z]
48h..m*[F\bar{4}3m\ h]F6z2xx
96i1*[F\bar{4}3m\ i]F6z2xx2y
      
217 [{\bi I}\bar{\bf 4}{\bf 3}{\bi m}]
2a[\bar{4} 3m] [Im\bar{3}m\ a]I
6b[\bar{4}2.m] [Im\bar{3}m\ b][J^{*}]
8c.3m*[I\bar{4}3m\ c]I4xxx
12d[\bar{4}..] [Im\bar{3}m\ d][W^{*}]
12e2.mm [Im\bar{3}m\ e]I6z
24f2.. [Im\bar{3}m\ g][.3.\ J^{*}4x]
24g..m*[I\bar{4}3m\ g]I6z2xx
48h1*[I\bar{4}3m\ h]I6z2xx2y
      
218 [{\bi P}\bar{\bf 4}{\bf 3}{\bi n}]
2a23. [Im\bar{3}m\ a]I
6b222.. [Im\bar{3}m\ b][J^{*}]
6c[\bar{4}..] [Pm\bar{3}n\ c][{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ W]
6d   W
8e.3. [I\bar{4}3m\ c]I4xxx
12f2.. [Im\bar{3}m\ e]I6z
12g2.. [Pm\bar{3}n\ g][{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .3.\ W2z]
12h   .3. W2z
24i1*[P\bar{4}3n\ i]..c I6z2xy
      
219 [{\bi F}\bar{\bf 4}{\bf 3}{\bi c}]
8a23. [Pm\bar{3}m\ a][P_{2}]
8b   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
24c[\bar{4}..] [Pm\bar{3}m\ c][J_{2}]
24d   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ J_{2}]
32e.3. [P\bar{4}3m\ e][P_{2}4xxx]
48f2.. [Pm\bar{3}m\ e][P_{2}6z]
48g   [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}6z]
96h1*[F\bar{4}3c\ h][..n\ P_{2}6z2xy]
      
220 [{\bi I}\bar{\bf 4}{\bf 3}{\bi d}]
12a[\bar{4}..]*[I\bar{4}3d\ a]S
12b   [^{'}\!S]
16c.3.*[I\bar{4}3d\ c][\bar{4}..\ I_{2} Y^{**}1xxx]
24d2..*[I\bar{4}3d\ d].3. S2z
48e1*[I\bar{4}3d\ e].3d S4xyz
      
221 [{\bi P}{\bi m}\bar{\bf 3}{\bi m}]
1a[m\bar{3}m]*[Pm\bar{3}m\ a]P
1b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
3c[4/mm.m]*[Pm\bar{3}m\ c]J
3d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ J]
6e4m.m*[Pm\bar{3}m\ e]P6z
6f   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z]
8g.3m*[Pm\bar{3}m\ g]P8xxx
12hmm2..*[Pm\bar{3}m\ h].3. J4x
12im.m2*[Pm\bar{3}m\ i]P12xx
12j   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P12xx]
24km..*[Pm\bar{3}m\ k]P6z4x
24l   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P6z4x]
24m..m*[Pm\bar{3}m\ m]P6z4xx
48n1*[Pm\bar{3}m\ n]P6z4x2y
      
222 [{\bi P}{\bi n}\bar{\bf 3}{\bi n}]
2a432 [Im\bar{3}m\ a]I
6b42.2 [Im\bar{3}m\ b][J^{*}]
8c[.\bar{3}.] [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
12d[\bar{4}..] [Im\bar{3}m\ d][W^{*}]
12e4.. [Im\bar{3}m\ e]I6z
16f.3. [Im\bar{3}m\ f]I8xxx
24g2.. [Im\bar{3}m\ g][.3.\ J^{*}4x]
24h..2 [Im\bar{3}m\ h]I12xx
48i1*[Pn\bar{3}n\ i]n.. I6z4xy
      
223 [{\bi P}{\bi m}\bar{\bf 3}{\bi n}]
2a[m\bar{3}.] [Im\bar{3}m\ a]I
6bmmm.. [Im\bar{3}m\ b][J^{*}]
6c[\bar{4}m.2]*[Pm\bar{3}n\ c]W
6d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ W]
8e.32 [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
12fmm2.. [Im\bar{3}m\ e]I6z
12gmm2..*[Pm\bar{3}n\ g].3. W2z
12h   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ .3.\ W2z]
16i.3. [Im\bar{3}m\ f]I8xxx
24j..2*[Pm\bar{3}n\ j].3. W4xx
24km..*[Pm\bar{3}n\ k]..2 I6z2x
48l1*[Pm\bar{3}n\ l]..2 I6z2x2y
      
224 [{\bi P}{\bi n}\bar{\bf 3}{\bi m}]
2a[\bar{4}3m] [Im\bar{3}m\ a]I
4b[.\bar{3}m] [Fm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4c   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
6d[\bar{4}2.m] [Im\bar{3}m\ b][J^{*}]
8e.3m*[Pn\bar{3}m\ e]..2 I4xxx
12f2.22 [Im\bar{3}m\ d][W^{*}]
12g2.mm [Im\bar{3}m\ e]I6z
24h2.. [Im\bar{3}m\ g][.3.\ J^{*}4x]
24i..2*[Pn\bar{3}m\ i][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ \bar{4}..\ F6x\bar{x}]
24j   [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ \bar{4}..\ F6x\bar{x}]
24k..m*[Pn\bar{3}m\ k]..2 I6z2xx
48l1*[Pn\bar{3}m\ l]..2 I6z2xx2y
      
225 [{\bi F}{\bi m}\bar{\bf 3}{\bi m}]
4a[m\bar{3}m]*[Fm\bar{3}m\ a]F
4b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F]
8c[\bar{4}3m] [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
24dm.mm [Pm\bar{3}m\ c][J_{2}]
24e4m.m*[Fm\bar{3}m\ e]F6z
32f.3m*[Fm\bar{3}m\ f]F8xxx
48g2.mm [Pm\bar{3}m\ e][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}6z]
48hm.m2*[Fm\bar{3}m\ h]F12xx
48i   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ F12xx]
96jm..*[Fm\bar{3}m\ j]F6z4x
96k..m*[Fm\bar{3}m\ k]F6z4xx
192l1*[Fm\bar{3}m\ l]F6z4x2y
      
226 [{\bi F}{\bi m}\bar{\bf 3}{\bi c}]
8a432 [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8b[m\bar{3}.] [Pm\bar{3}m\ a][P_{2}]
24c[\bar{4}m.2] [Pm\bar{3}m\ c][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ J_{2}]
24d[4/m..] [Pm\bar{3}m\ c][J_{2}]
48emm2.. [Pm\bar{3}m\ e][P_{2}6z]
48f4.. [Pm\bar{3}m\ e][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}6z]
64g.3. [Pm\bar{3}m\ g][P_{2}8xxx]
96h..2 [Pm\bar{3}m\ i][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}12xx]
96im..*[Fm\bar{3}c\ i][..2\ P_{2}6z2x]
192j1*[Fm\bar{3}c\ j][..2\ P_{2}6z2x2y]
      
227 [{\bi F}{\bi d}\bar{\bf 3}{\bi m}]
8a[\bar{4}3m]*[Fd\bar{3}m\ a]D
8b   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ D]
16c[.\bar{3}m]*[Fd\bar{3}m\ c]T
16d   [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ T]
32e.3m*[Fd\bar{3}m\ e]..2 D4xxx
48f2.mm*[Fd\bar{3}m\ f]D6z
96g..m*[Fd\bar{3}m\ g]..2 D6z2xx
96h..2*[Fd\bar{3}m\ h][\bar{4}..\ T6x\bar{x}]
192i1*[Fd\bar{3}m\ i]..2 D6z2xx2y
      
228 [{\bi F}{\bi d}\bar{\bf 3}{\bi c}]
16a23. [Im\bar{3}m\ a][I_{2}]
32b.32 [Fm\bar{3}m\ a][{\textstyle{1 \over 8}{1 \over 8}{1 \over 8}}\ F_{2}]
32c[.\bar{3}.] [Fm\bar{3}m\ a][{\textstyle{3 \over 8} {3 \over 8} {3 \over 8}}\ F_{2}]
48d[\bar{4}..] [Im\bar{3}m\ b][{J^{*}}_{2}]
64e.3. [Pn\bar{3}m\ e][(..2\ I4xxx)_{2}]
96f2.. [Im\bar{3}m\ e][I_{2}6z]
96g..2*[Fd\bar{3}c\ g][{\textstyle{1 \over 8}{1 \over 8}{1 \over 8}}\ \bar{4}2..\ F_{2}3x\bar{x}]
192h1*[Fd\bar{3}c\ h][d.2\ I_{2}6z2xy]
      
229 [{\bi I}{\bi m}\bar{\bf 3}{\bi m}]
2a[m\bar{3}m]*[Im\bar{3}m\ a]I
6b[4/mm.m]*[Im\bar{3}m\ b][J^{*}]
8c[.\bar{3}m] [Pm\bar{3}m\ a][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
12d[\bar{4}m.2]*[Im\bar{3}m\ d][W^{*}]
12e4m.m*[Im\bar{3}m\ e]I6z
16f.3m*[Im\bar{3}m\ f]I8xxx
24gmm2..*[Im\bar{3}m\ g][.3.\ J^{*}4x]
24hm.m2*[Im\bar{3}m\ h]I12xx
48i..2*[Im\bar{3}m\ i][{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ 4..\ P_{2}6x\bar{x}]
48jm..*[Im\bar{3}m\ j]I6z4x
48k..m*[Im\bar{3}m\ k]I6z4xx
96l1*[Im\bar{3}m\ l]I6z4x2y
      
230 [{\bi I}{\bi a}\bar{\bf 3}{\bi d}]
16a[.\bar{3}.] [Im\bar{3}m\ a][I_{2}]
16b.32*[Ia\bar{3}d\ b][Y^{**}]
24c2.22*[Ia\bar{3}d\ c][V^{*}]
24d[\bar{4}..]*[Ia\bar{3}d\ d][S^{*}]
32e.3.*[Ia\bar{3}d\ e][\bar{4}..\ Y^{**}2xxx]
48f2..*[Ia\bar{3}d\ f][.3.\ S^{*}2z]
48g..2*[Ia\bar{3}d\ g][\bar{4}a..\ Y^{**}3x\bar{x}]
96h1*[Ia\bar{3}d\ h][\bar{4}a..\ I_{2}6xyz]

14.2.2. Additional properties of lattice complexes

| top | pdf |

14.2.2.1. The degrees of freedom

| top | pdf |

The number of coordinate parameters that can be varied independently within a Wyckoff position is called its number of degrees of freedom. For most lattice complexes, the number of degrees of freedom is the same as for any of its Wyckoff positions. The lattice complex with characteristic Wyckoff position [Pm\bar{3}\ 12j\ m..\ 0yz], for instance, has two degrees of freedom. If, however, the variation of a coordinate corresponds to a shift of the point configuration as a whole, one degree of freedom is lost. Therefore, [I4_{1}\ 8b\ xyz] is the characteristic Wyckoff position of a lattice complex with only two degrees of freedom, although position 8b itself has three degrees of freedom. Another example is given by [P4/m\ 4j\ m..\ xy0] and P4 4d 1 xyz. Both Wyckoff positions belong to lattice complex [P4/m\ j] with two degrees of freedom.

According to its number of degrees of freedom, a lattice complex is called invariant, univariant, bivariant or trivariant. In total, there exist 402 lattice complexes, 36 of which are invariant, 106 univariant, 105 bivariant and 155 trivariant. The 30 plane lattice complexes are made up of 7 invariant, 10 univariant and 13 bivariant ones.

Most of the invariant and univariant lattice complexes correspond to several types of Wyckoff set. In contrast to that, only one type of Wyckoff set belongs to each trivariant lattice complex. A bivariant lattice complex may either correspond to one type of Wyckoff set (e.g. [Pm\bar{3}\ j]) or to two types (P4 d, for example, belongs to the lattice complex with the characteristic position [P4/m\ j]).

14.2.2.2. Limiting complexes and comprehensive complexes

| top | pdf |

For point groups, the occurrence of limiting crystal forms is well known. In [4/m], for instance, any tetragonal prism [\{hk0\}] is a special crystal form with face symmetry m.. . In point group 4, on the other hand, the tetragonal prisms [\{hk0\}] belong, as special cases, to the set of general crystal forms [\{hkl\}], the tetragonal pyramids, and there is no difference between [\{hkl\}] and [\{hk0\}] in either the number or the symmetry of their faces. Therefore, the tetragonal prism is called a `limiting form' of the tetragonal pyramid. In a case like this, all possible sets of equivalent faces belonging to a special type of crystal form (the tetragonal prism) may also be generated as a subset of another more comprehensive type of crystal form (the tetragonal pyramid). Of course, it is not possible, by considering a tetragonal prism by itself, to decide whether it has been generated by point group [4/m] or by point group 4. This distinction can be made, however, if the tetragonal prism shows the right striations or occurs in combination with other appropriate crystal forms. Low quartz (oriented point group 321) gives a well known example: the hexagonal prism [\{10\bar{1}0\}] has the same site symmetry 1 as any trigonal trapezohedron [\{hkil\}]. Therefore, [\{10\bar{1}0\}] may be recognized as a limiting form only if the crystal shows in addition at least one trigonal trapezohedron.

A similar relation may exist between two lattice complexes. Let L be a lattice complex generated by a Wyckoff position of a space group [{\cal G}] (e.g. by [P4/mmm\ 4l\ m2m.\ x00]). An appropriate Wyckoff position of a subgroup [{\cal H}] of [{\cal G}] (e.g. [P4/m\ 4j\ m..\ xy0]) may produce not only all point configurations of L but other point configurations in addition (with different orientations of the squares in the example). The complete set then forms a second lattice complex M. Such relationships led to the following definition (Fischer & Koch, 1974,[link] 1978[link]):

If a lattice complex L forms a true subset of another lattice complex M, the lattice complex L is called a limiting complex of M and the lattice complex M a comprehensive complex of L.

The point configurations of the limiting complex L are generated within M by restrictions imposed on the coordinate or/and the metrical parameters.

In the above example, such a restriction holds for the y coordinate: the condition [y = 0] for Wyckoff position 4j of [P4/m] filters out exactly those point configurations that constitute the lattice complex [P4/mmm\ l]. The latter complex is, therefore, a limiting complex of the lattice complex [P4/m\ j]. In the present case of restricted coordinates, both complexes belong to the same crystal family and L has fewer degrees of freedom than M.

Another kind of limiting-complex relation is connected with restrictions for metrical parameters. All point configurations of the lattice complex [Pm\bar{3}m\ a] are also generated by [P4/mmm\ a] under the restriction [a = c], i.e. in special space groups of type [P4/mmm]. Here L and M have the same number of degrees of freedom, but belong to different crystal families.

Finally, the two types of parameter restrictions for limiting complexes may also occur in combination. The trivariant lattice complex with characteristic Wyckoff position [P4_{1}2_{1}2\ 8b\ xyz], for example, contains the invariant cubic lattice complex [Fm\bar{3}m\ a] as a limiting complex. The parameter restrictions necessary are [x = {1 \over 2}, y = 0, z = {1 \over 16}, c/a = 4\surd{2}].

As for a limiting form in crystal morphology, it is often impossible to decide by which symmetry (space group and Wyckoff set) a particular point configuration, regarded by itself, has been generated. If a point configuration belongs to a lattice complex that is part of a comprehensive complex, this point configuration is a member of both complexes. As a consequence, the lattice complexes do not form equivalence classes of point configurations. Only if a point configuration is inspected in combination with a sufficient number of other point configurations – like sets of symmetrically equivalent atoms in a crystal structure – does it make sense to assign this point configuration to a particular lattice complex. An example is found in the crystal structures of the spinel type. Here, the oxygen atoms occupy Wyckoff position 32e xxx in [Fd\bar{3}m] with [x \approx {3 \over 8}] (referred to origin choice 1). If x is restricted to [{3 \over 8}], the point configurations generated are those of the lattice complex [Fm\bar{3}m\ a] (formed by all face-centred cubic point lattices). If for a spinel-type structure this restriction holds exactly, the point configurations of the cations would, nevertheless, reveal the true generating symmetry of the oxygen point configuration. It has, therefore, to be considered a member of the comprehensive complex [Fd\bar{3}m\ e] rather than a member of the lattice complex [Fm\bar{3}m\ a] (which includes among others the point configuration of the copper atoms in the crystal structure of copper). For practical applications, a point configuration contained in several lattice complexes may be investigated within the complex that is the least comprehensive but still allows the physical behaviour under discussion. This corresponds to the definition of the symmetry of a crystal generally used in crystallography: the highest symmetry that can be assigned to a crystal as a whole is that of its least symmetrical property known to date.

Even though limiting-complex relations are very useful for establishing crystallochemical relationships between different crystal structures, a complete study has not yet been carried out. Apart from isolated examples in the literature, systematic treatments have been given only for special aspects: plane lattice complexes (Burzlaff et al., 1968)[link]; cubic lattice complexes (Koch, 1974)[link]; point complexes, rod complexes and layer complexes (Fischer & Koch, 1978)[link]; extraordinary orbits for plane groups (Lawrenson & Wondratschek, 1976)[link]; noncharacteristic orbits of space groups except those that are due to metrical specialization (Engel et al., 1984)[link]. The closely related concepts of limiting complexes and noncharacteristic orbits have been compared by Koch & Fischer (1985)[link].

14.2.2.3. Weissenberg complexes

| top | pdf |

Depending on their site-symmetry groups, two kinds of Wyckoff position may be distinguished:

  • (i) The site-symmetry group of any point is a proper subgroup of another site-symmetry group from the same space group. Then, the Wyckoff position contains, among others, point configurations with the property that the distance between two suitable chosen points is shorter than any small number [\varepsilon \gt 0].

    Example

    Each point configuration of the lattice complex with the characteristic Wyckoff position [P4/mmm\ 4j\ m.2m\ xx0] may be imagined as squares of four points surrounding the points of a tetragonal primitive lattice. For [x \rightarrow 0], the squares become infinitesimally small. Point configurations with [x = 0] show site symmetry [4/mmm], their multiplicity is decreased from 4 to 1, and they belong to lattice complex [P4/mmm\ a].

  • (ii) The site-symmetry group of any point belonging to the regarded Wyckoff position is not a subgroup of any other site-symmetry group from the same space group.

    Example

    In Pmma, there does not exist a site-symmetry group that is a proper supergroup of mm2, the site-symmetry group of Wyckoff position [Pmma\ 2e\ {1 \over 4}0z]. As a consequence, the distance between any two symmetrically equivalent points belonging to Pmma e cannot become shorter than the minimum of [{1 \over 2}a, b] and c.

A lattice complex contains either Wyckoff positions exclusively of the first or exclusively of the second kind. Most lattice complexes are made up from Wyckoff positions of the first kind.

There exist, however, 67 lattice complexes that do not contain point configurations with infinitesimal short distances between symmetry-related points [cf. Hauptgitter (Weissenberg, 1925)[link]]. These lattice complexes have been called Weissenberg complexes by Fischer et al. (1973)[link]. The 36 invariant lattice complexes are trivial examples of Weissenberg complexes. In addition, there exist 24 univariant (monoclinic 2, orthorhombic 5, tetragonal 7, hexagonal 5, cubic 5) and 6 bivariant Weissenberg complexes (monoclinic 1, orthorhombic 2, tetragonal 1, hexagonal 2). The only trivariant Weissenberg complex is [P2_{1}2_{1}2_{1}\ a]. All Weissenberg complexes with degrees of freedom have the following common property: each Weissenberg complex contains at least two invariant limiting complexes belonging to the same crystal family.

Example

Pmma e is a comprehensive complex of Pmmm a and of Cmmm a. Within the characteristic Wyckoff position, [{1 \over 4}00] refers to Pmmm a and [{1 \over 4}0{1 \over 4}] to Cmmm a.

Except for the seven invariant plane lattice complexes, there exists only one further Weissenberg complex within the plane groups, namely the univariant rectangular complex p2mg c.

14.2.3. Descriptive symbols

| top | pdf |

14.2.3.1. Introduction

| top | pdf |

For the study of relations between crystal structures, lattice-complex symbols are desirable that show as many relations between point configurations as possible. To this end, Hermann (1960)[link] derived descriptive lattice-complex symbols that were further developed by Donnay et al. (1966[link]) and completed by Fischer et al. (1973)[link]. These symbols describe the arrangements of the points in the point configurations and refer directly to the coordinate descriptions of the Wyckoff positions. Since a lattice complex, in general, contains Wyckoff positions with different coordinate descriptions, it may be represented by several different descriptive symbols. The symbols are further affected by the settings of the space group. The present section is restricted to the fundamental features of the descriptive symbols. Details have been described by Fischer et al. (1973)[link]. Tables 14.2.3.1[link] and 14.2.3.2[link] give for each Wyckoff position of a plane group or a space group, respectively, the multiplicity, the Wyckoff letter, the oriented site symmetry, the reference symbol of the corresponding lattice complex and the descriptive symbol.1 The comparatively short descriptive symbols condense complicated verbal descriptions of the point configurations of lattice complexes.

14.2.3.2. Invariant lattice complexes

| top | pdf |

Invariant lattice complexes in their characteristic Wyckoff position are represented by a capital letter eventually in combination with some superscript. The first column of Table 14.2.3.3[link] gives a complete list of these symbols in alphabetical order. The characteristic Wyckoff positions are shown in column 3. Lattice complexes from different crystal families but with the same coordinate description for their characteristic Wyckoff positions receive the same descriptive symbol. If necessary, the crystal family may be stated explicitly by a small letter (column 2) preceding the lattice-complex symbol: c cubic, t tetragonal, h hexagonal, o orthorhombic, m monoclinic, a anorthic (triclinic).

Table 14.2.3.3| top | pdf |
Descriptive symbols of invariant lattice complexes in their characteristic Wyckoff position

Descriptive symbolCrystal familyCharacteristic Wyckoff position
CoCmmm a
m[C2/m\ a]
Dc[Fd\bar{3}m\ a]
oFddd a
[^{v}D]t[I4_{1}/amd\ a]
Eh[P6_{3}/mmc\ c]
Fc[Fm\bar{3}m\ a]
oFmmm a
Gh[P6/mmm\ c]
Ic[Im\bar{3}m\ a]
t[I4/mmm\ a]
oImmm a
Jc[Pm\bar{3}m\ c]
[J^{*}]c[Im\bar{3}m\ b]
Mh[R\bar{3}m\ e]
Nh[P6/mmm\ f]
Pc[Pm\bar{3}m\ a]
h[P6/mmm\ a]
t[P4/mmm\ a]
oPmmm a
m[P2/m\ a]
a[P\bar{1}\ a]
[^{+}Q]h[P6_{2}22\ c]
Rh[R\bar{3}m\ a]
Sc[I\bar{4}3d\ a]
[S^{*}]c[Ia\bar{3}d\ d]
Tc[Fd\bar{3}m\ c]
oFddd c
[^{v}T]t[I4_{1}/amd\ c]
[^{+}V]c[I4_{1}32\ c]
[V^{*}]c[Ia\bar{3}d\ c]
Wc[Pm\bar{3}n\ c]
[W^{*}]c[Im\bar{3}m\ d]
[^{+}Y]c[P4_{3}32\ a]
[^{+}Y^{*}]c[I4_{1}32\ a]
[Y^{**}]c[Ia\bar{3}d\ b]

Example

D is the descriptive symbol of the invariant cubic lattice complex [Fd\bar{3}m] a as well as of the orthorhombic lattice complex Fddd a. The cubic lattice complex cD contains – among others – the point configurations corresponding to the arrangement of carbon atoms in diamond and of silicon atoms in β-cristobalite. The orthorhombic complex oD is a comprehensive complex of cD. It consists of all those point configurations that may be produced by orthorhombic deformations of the point configurations of cD.

The descriptive symbol of a noncharacteristic Wyckoff position depends on the difference between the coordinate descriptions of the respective characteristic Wyckoff position and the position under consideration. Three cases may be distinguished, which may also occur in combinations.

  • (i) The two coordinate descriptions differ by an origin shift. Then, the respective shift vector is added as a prefix to the descriptive symbol of the characteristic Wyckoff position.

    Example

    The orthorhombic invariant lattice complex C is represented in its characteristic Wyckoff position Cmmm a by the coordinate triplets 000 and [{1 \over 2}{1 \over 2}0]. In Ibam a, it is described by [00{1 \over 4}], [{1 \over 2}{1 \over 2}{1 \over 4}] and, therefore, receives the descriptive symbol [00{1 \over 4}\;C].

  • (ii) The multiplicity of the Wyckoff position considered is higher than that of the corresponding characteristic position. Then, the coordinate description of this Wyckoff position can be transformed into that of the characteristic position by taking shorter basis vectors. Reduction of all three basis vectors by a factor of 2 is denoted by the subscript 2 on the descriptive symbol. Reduction of one or two basis vectors by a factor of 2 is denoted by one of the subscripts a, b or c or a combination of these. The subscript C means a factor of 3, cc a factor of 4 and Cc a factor of 6.

    Examples

    The characteristic Wyckoff position of the orthorhombic lattice complex P is Pmmm a with coordinate description 000. It occurs also in Pmma a with coordinate triplets [000, {1 \over 2}00], and in Pcca a with [000, 00{1 \over 2}, {1 \over 2}00, {1 \over 2}0{1 \over 2}]. The corresponding descriptive symbols are [P_{a}] and [P_{ac}], respectively.

  • (iii) The coordinate description of a given Wyckoff position is related to that of the characteristic position by inversion or rotation of the coordinate system. Changing the superscript + into − in the descriptive symbol means that the considered Wyckoff position is mapped onto the characteristic position by an inversion through the origin, i.e. both Wyckoff positions are enantiomorphic. A prime preceding the capital letter denotes that a 180° rotation is required.

    Examples

    • (1) [^{+}Y^{*}] is the descriptive symbol of the invariant lattice complex [I4_{1}32\; a] in its characteristic position. Wyckoff position [I4_{1}32\; b] with the descriptive symbol [^{-}Y^{*}] belongs to the same lattice complex. The point configurations of [I4_{1}32\; a] and [I4_{1}32\; b] are enantiomorphic.

    • (2) R is the descriptive symbol of the invariant lattice complex formed by all rhombohedral point lattices. Its characteristic position [R\bar{3}m\; a] corresponds to the coordinate triplets [000, {2 \over 3}{1 \over 3}{1 \over 3}, {1 \over 3}{2 \over 3}{2 \over 3}]. The same lattice complex is symbolized by ['R_{c}] in the noncharacteristic position [R\bar{3}c\; b] with coordinate description 000, [00{1 \over 2}], [{2 \over 3}{1 \over 3}{1 \over 3}], [{2 \over 3}{1 \over 3}{5 \over 6}], [{1 \over 3}{2 \over 3}{2 \over 3}], [{1 \over 3}{2 \over 3}{1 \over 6}].

In noncharacteristic Wyckoff positions, the descriptive symbol P may be replaced by C, I by F (tetragonal system), C by A or B (orthorhombic system), and C by A, B, I or F (monoclinic system). If the lattice complexes of rhombohedral space groups are described in rhombohedral coordinate systems, the symbols R, ['R_{c}], M and ['M_{c}] of the hexagonal description are replaced by P, I, J and [J^{*}], respectively (preceded by the letter r, if necessary, to distinguish them from the analogous cubic invariant lattice complexes).

14.2.3.3. Lattice complexes with degrees of freedom

| top | pdf |

The descriptive symbols of lattice complexes with degrees of freedom consist, in general, of four parts: shift vector, distribution symmetry, central part and site-set symbol. Either of the first two parts may be absent.

Example

[0{1 \over 2}0] ..2 C4xxz is the descriptive symbol of the lattice complex [P4/nbm\ m] in its characteristic position: [0{1 \over 2}0] is the shift vector, ..2 the distribution symmetry, C the central part and 4xxz the site-set symbol.

Normally, the central part is the symbol of an invariant lattice complex. Shift vector and central part together should be interpreted as described in Section 14.2.3.2[link]. The point configurations of the regarded Wyckoff position can be derived from that described by the central part by replacing each point by a finite set of points, the site set. All points of a site set are symmetrically equivalent under the site-symmetry group of the point that they replace. A site set is symbolized by a string of numbers and letters. The product of the numbers gives the number of points in the site set, whereas the letters supply information on the pattern formed by these points. Site sets replacing different points may be differently oriented. In this case, the distribution-symmetry part of the reference symbol shows symmetry operations that relate such site sets to one another. The orientation of the corresponding symmetry elements is indicated as in the oriented site-symmetry symbols (cf. Section 2.2.12[link] ). If all site sets have the same orientation, no distribution symmetry is given.

Examples

  • (1) [I4xxx\ (I\bar{4}3m\ 8c\ xxx)] designates a lattice complex, the point configurations of which are composed of tetrahedra 4xxx in parallel orientations replacing the points of a cubic body-centred lattice I. The vertices of these tetrahedra are located on body diagonals.

  • (2) [.. 2\ I4xxx\ (Pn\bar{3}m\ 8e\ xxx)] represents the lattice complex for which, in contrast to the first example, the tetrahedra 4xxx around 000 and [{1 \over 2}{1 \over 2}{1 \over 2}] differ in their orientation. They are related by a twofold rotation ..2 .

  • (3) [00{1 \over 4}\ P_{c}4x] is the descriptive symbol of Wyckoff position [P4_{2}/mcm\ 8l\ x0{1 \over 4}]. Each corresponding point configuration consists of squares of points 4x replacing the points of a tetragonal primitive lattice P. In comparison with [P4x], [00{1 \over 4}\ P_{c}4x] shows a unit-cell enlargement by [{\bf c}' = 2{\bf c}] and a subsequent shift by the vector [(00{1 \over 4})].

In the case of a Weissenberg complex, the central part of the descriptive symbol always consists of two (or more) symbols of invariant lattice complexes belonging to the same crystal family and forming limiting complexes of the regarded Weissenberg complex. The shift vector then refers to the first limiting complex. The corresponding site-set symbols are distinguished by containing the number 1 as the only number, i.e. each site set consists of only one point.

Example

In [{1 \over 4}00\ .2.\ P_{a}B1z\ (Pmma\ 2e\ {1 \over 4}0z)], each of the two points [{1 \over 4}00] and [{3 \over 4}00], represented by [{1 \over 4}00\ P_{a}], is replaced by a site set containing only one point 1z, i.e. the points are shifted along the z axis. The shifts of the two points are related by a twofold rotation .2., i.e. are running in opposite directions. The point configurations of the two limiting complexes [P_{a}] and B refer to the special parameter values [z = 0] and [z = {1 \over 4}], respectively.

The central parts of some lattice complexes with two or three degrees of freedom are formed by the descriptive symbol of a univariant Weissenberg complex instead of that of an invariant lattice complex. This is the case only if the corresponding characteristic space-group type does not refer to a suitable invariant lattice complex.

Example

In [{1 \over 4}00\ .2.\ P_{a}B1z2y\ (Pmma\ 4k\ {1 \over 4}yz)], each of the two points [{1 \over 4}0z] and [{3 \over 4}0\bar{z}], represented by [{1\over 4}00] [.2.\ P_{a}B1z], is replaced by a site set 2y of two points forming a dumb-bell. These dumb-bells are oriented parallel to the y axis.

The symbol of a noncharacteristic Wyckoff position is deduced from that of the characteristic position. The four parts of the descriptive symbol are subjected to the transformation necessary to map the characteristic Wyckoff position onto the Wyckoff position under consideration.

Example

The lattice complex with characteristic Wyckoff position Imma 8h 0yz has the descriptive symbol [.2.\ B_{b}2yz] for this position. Another Wyckoff position of this lattice complex is [Imma\ 8i\ x{1 \over 4}z]. The corresponding point configurations are mapped onto each other by interchanging positive x and negative y directions and shifting by [({1 \over 4}{1 \over 4}{1 \over 4})]. Therefore, the descriptive symbol for Wyckoff position Imma i is [{1 \over 4}{1 \over 4}{1 \over 4}\ 2..\ A_{a}2xz].

In some cases, the Wyckoff position described by a lattice-complex symbol has more degrees of freedom than the lattice complex (see Section 14.2.2.1[link]). In such a case, a letter (or a string of letters) in brackets is added to the symbol.

Examples

tP [z] for P4 a, aP[xyz] for P1 a.

14.2.3.4. Properties of the descriptive symbols

| top | pdf |

Different kinds of relations between lattice complexes are brought out.

Examples

[P \leftrightarrow P4x \leftrightarrow P4x2z, \quad I4xxx \leftrightarrow ..2\ I4xxx, \quad P4x \leftrightarrow I4x].

In many cases, limiting-complex relations can be deduced from the symbols. This applies to limiting complexes due either to special metrical parameters (e.g. [cP \leftrightarrow rP] etc.) or to special values of coordinates (e.g. both P4x and P4xx are limiting complexes of P4xy). If the site set consists of only one point, the central part of the symbol specifies all corresponding limiting complexes without degrees of freedom that are due to special values of the coordinates (e.g. [2_{1}2_{1}]. [FA_{a}B_{b}C_{c}I_{a}I_{b}I_{c}1xyz] for the general position of [P2_{1}2_{1}2_{1}]).

References

First citation Burzlaff, H., Fischer, W. & Hellner, E. (1968). Die Gitterkomplexe der Ebenengruppen. Acta Cryst. A24, 57–67.Google Scholar
First citation Donnay, J. D. H., Hellner, E. & Niggli, A. (1966). Symbolism for lattice complexes, revised by a Kiel symposium. Z. Kristallogr. 123, 255–262.Google Scholar
First citation Engel, P., Matsumoto, T., Steinmann, G. & Wondratschek, H. (1984). The non-characteristic orbits of the space groups. Z. Kristallogr. Supplement issue No. 1.Google Scholar
First citation Fischer, W., Burzlaff, H., Hellner, E. & Donnay, J. D. H. (1973). Space groups and lattice complexes. NBS Monograph No. 134. Washington: National Bureau of Standards.Google Scholar
First citation Fischer, W. & Koch, E. (1974). Eine Definition des Begriffs `Gitterkomplex'. Z Kristallogr. 139, 268–278.Google Scholar
First citation Fischer, W. & Koch, E. (1978). Limiting forms and comprehensive complexes for crystallographic point groups, rod groups and layer groups. Z. Kristallogr. 147, 255–273.Google Scholar
First citation Hermann, C. (1935). Gitterkomplexe/Lattice complexes/Complexes réticulaires. In Internationale Tabellen zur Bestimmung von Kristallstrukturen. 1. Band, edited by C. Hermann. Berlin: Borntraeger. [Reprint with corrections: Ann Arbor: Edwards (1944).]Google Scholar
First citation Hermann, C. (1960). Zur Nomenklatur der Gitterkomplexe. Z. Kristallogr. 113, 142–154.Google Scholar
First citation Koch, E. (1974). Die Grenzformen der kubischen Gitterkomplexe. Z. Kristallogr. 140, 75–86.Google Scholar
First citation Koch, E. & Fischer, W. (1975). Automorphismengruppen von Raumgruppen und die Zuordnung von Punktlagen zu Konfigurationslagen. Acta Cryst. A31, 88–95.Google Scholar
First citation Koch, E. & Fischer, W. (1985). Lattice complexes and limiting complexes versus orbit types and non-characteristic orbits: a comparative discussion. Acta Cryst. A41, 421–426.Google Scholar
First citation Lawrenson, J. E. & Wondratschek, H. (1976). The extraordinary orbits of the 17 plane groups. Z. Kristallogr. 143, 471–484.Google Scholar
First citation Weissenberg, K. (1925). Der Aufbau der Kristalle. I. Mitteilung. Die Systematik der Symmetriegruppen von Punktlagen im Diskontinuum. Z. Kristallogr. 62, 13–51.Google Scholar








































to end of page
to top of page