International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 14.3, p. 873

Section 14.3.2. Relations between crystal structures

W. Fischera and E. Kocha*

a Institut für Mineralogie, Petrologie und Kristallographie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail:  kochelke@mailer.uni-marburg.de

14.3.2. Relations between crystal structures

| top | pdf |

Frequently, different crystal structures show the same geometrical arrangement for some of their atoms, even though their space groups do not belong to the same type. In these cases, the corresponding Wyckoff positions either belong to the same lattice complex or there exist close relationships between them, e.g. limiting-complex relations.

Examples

  • (1) The Fe atoms in pyrite FeS2 occupy Wyckoff position [4a\ 000\ .\bar{3}]. of [Pa\bar{3}] (descriptive symbol F) that belongs to the invariant lattice complex [Fm\bar{3}m\ a]. Accordingly, the Fe atoms in pyrite form a face-centred cubic lattice as do the Cu atoms in the element structure of copper.

  • (2) Cuprite Cu2O crystallizes with symmetry [Pn\bar{3}m]. The oxygen atoms occupy Wyckoff position [2a\ 000\ \bar{4}3m] (descriptive symbol I) and the copper atoms position [4b\ {1 \over 4} {1 \over 4} {1 \over 4}\ .\bar{3}m] (descriptive symbol [{1 \over 4} {1 \over 4} {1 \over 4}\; F]). Position 2a belongs to lattice complex [Im\bar{3}m\ a] and position 4b to [Fm\bar{3}m\ a]. Therefore, the O atoms form a body-centred cubic lattice like the W atoms in the structure of tungsten, and the copper atoms form a face-centred cubic lattice. The tungsten configuration is shifted by [({1 \over 4} {1 \over 4} {1 \over 4})] with respect to the copper configuration.

  • (3) K2NaAlF6 (elpasolite, cf. Morss, 1974[link]) and K2PbNi(NO2)6 (cf. Takagi et al., 1975)[link] crystallize with symmetry [Fm\bar{3}m] and [Fm\bar{3}], respectively.[\displaylines{&\hbox{K}_{2}\hbox{NaAlF}_{6}\hfill\cr &\quad\! \matrix{\hbox{Al}\hfill &4a \hfill &m\bar{3}m \hfill &000 \hfill &F\hfill\cr \hbox{Na} \hfill &4b \hfill &m\bar{3}m \hfill &{1 \over 2}{1 \over 2}{1 \over 2} \hfill &{1 \over 2}{1 \over 2}{1 \over 2} F\cr \hbox{K} \hfill &8c \hfill &\bar{4}3m \hfill &{1 \over 4}{1 \over 4}{1 \over 4} \hfill &{1 \over 4}{1 \over 4}{1 \over 4} P_{2}\cr \hbox{F} \hfill &24e \hfill &4m.m \hfill &x00 \hfill &F6z\hfill\cr & & &x = 0.219\hfill \cr}}] [\displaylines{&\hbox{K}_{2}\hbox{PbNi}(\hbox{NO}_{2})_{6}\hfill\cr &\quad\! \matrix{\hbox{Ni} \hfill &4a \hfill &m\bar{3}. \hfill &000 \hfill &F\hfill\cr \hbox{Pb} \hfill &4b \hfill &m\bar{3}. \hfill &{1 \over 2}{1 \over 2}{1 \over 2} \hfill &{1 \over 2}{1 \over 2}{1 \over 2} F\hfill\cr \hbox{K} \hfill &8c \hfill &23. \hfill &{1 \over 4}{1 \over 4}{1 \over 4} \hfill &{1 \over 4}{1 \over 4}{1 \over 4} P_{2} \hfill\cr \hbox{N} \hfill &24e \hfill &mm2.. \hfill &x00 \hfill &F6z\hfill\cr & & &x = 0.1966\cr \hbox{O} \hfill &48h \hfill &m.. \hfill &0yz \hfill &F6z2x \hfill \cr}}] As the descriptive lattice-complex symbols for the various atomic positions show immediately, the two crystal structures are very similar. The only difference originates from the replacement of the fluorine atoms in elpasolite by NO2 groups in K2PbNi(NO2)6, which causes the symmetry reduction from [Fm\bar{3}m] to [Fm\bar{3}].

  • (4) The crystal structure of CoU (Baenziger et al., 1950[link]) may be interpreted as a slightly distorted CsCl (or β-brass, CuZn)-type structure. CsCl corresponds to Wyckoff positions 1a and 1b of [Pm\bar{3}m] with descriptive symbol P and [{1 \over 2}{1 \over 2}{1 \over 2}\ P], respectively; Co and U both occupy Wyckoff position 8a .3. xxx of [I2_{1}3] with [x = 0.0347] for U and [x = 0.294] for Co. As the descriptive symbol [2_{1}2_{1}..\ P_{2}Y^{*}1xxx] shows, this Wyckoff position belongs to a Weissenberg complex with two invariant limiting complexes, namely P ([Pm\bar{3}m\ a]) and [Y^{*}\ (I4_{1}32\ a)]. [x = 0] corresponds to [P_{2}], [x = {1 \over 4}] to [{1 \over 4}{1 \over 4}{1 \over 4}\ P_{2}], [x = {1 \over 8}] to [^{+}Y^{*}] and [x = {7 \over 8}] to [^{-}Y^{*}]. Consequently, the uranium and cobalt atoms form approximately a [P_{2}] and a [{1 \over 4}{1 \over 4}{1 \over 4}\ P_{2}] configuration, respectively.

Publications by Hellner (1965,[link] 1976a[link],b[link],c[link], 1977[link], 1979[link]), Loeb (1970)[link], Smirnova & Vasserman (1971)[link], Sakamoto & Takahasi (1971)[link], Niggli (1971)[link], Fischer & Koch (1974)[link], Hellner et al. (1981)[link] and Hellner & Sowa (1985)[link] refer to this aspect.

References

First citation Baenziger, N. C., Rundle, R. E., Snow, A. T. & Wilson, A. S. (1950). Compounds of uranium with transition metals of the first long period. Acta Cryst. 3, 34–40.Google Scholar
First citation Fischer, W. & Koch, E. (1974). Kubische Strukturtypen mit festen Koordinaten. Z. Kristallogr. 140, 324–330.Google Scholar
First citation Hellner, E. (1965). Descriptive symbols for crystal-structure types and homeotypes based on lattice complexes. Acta Cryst. 19, 703–712.Google Scholar
First citation Hellner, E. (1976a). Verwandtschaftskriterien von Kristallstrukturtypen. I. Z. Anorg. Allg. Chem. 421, 37–40.Google Scholar
First citation Hellner, E. (1976b). Verwandtschaftskriterien von Kristallstrukturtypen. II. Die Einführung der Gitterkomplexe P, J und F. Z. Anorg. Allg. Chem. 421, 41–48.Google Scholar
First citation Hellner, E. (1976c). Verwandtschaftskriterien von Kristallstrukturtypen. III. Die kubischen Überstrukturen des ReO3-, Perowskit- und CaF2-Typs. Z. Anorg. Allg. Chem. 421, 49–60.Google Scholar
First citation Hellner, E. (1977). Verwandtschaftskriterien von Kristallstrukturtypen. IV. Ableitung von Strukturtypen der I-, P- und F-Familien. Z. Anorg. Allg. Chem. 437, 60–72.Google Scholar
First citation Hellner, E. (1979). The frameworks (Bauverbände) of the cubic structure types. Struct. Bonding (Berlin), 37, 61–140.Google Scholar
First citation Hellner, E., Koch, E. & Reinhardt, A. (1981). The homogeneous frameworks of the cubic crystal structures. Phys. Daten-Phys. Data, 16–2, 1–67.Google Scholar
First citation Hellner, E. & Sowa, H. (1985). The cubic structure types described in their space groups with the aid of frameworks. Phys. Daten-Phys. Data, 16–3, 1–141.Google Scholar
First citation Loeb, A. L. (1970). A systematic survey of cubic crystal structures. J. Solid State Chem. 1, 237–267.Google Scholar
First citation Morss, L. R. (1974). Crystal structure of dipotassium sodium fluoroaluminate (elpasolite). J. Inorg. Nucl. Chem. 36, 3876–3878.Google Scholar
First citation Niggli, A. (1971). Parameterfreie kubische Strukturtypen. Z. Kristallogr. 133, 473–490.Google Scholar
First citation Sakamoto, Y. & Takahasi, U. (1971). Invariant and quasi-invariant lattice complexes. J. Sci. Hiroshima Univ. Ser. A, 35, 1–51.Google Scholar
First citation Smirnova, N. L. & Vasserman, E. I. (1971). The line diagrams of crystalline substances. Structural types of the cubic system from invariant lattice complexes. Sov. Phys. Crystallogr. 15, 791–794.Google Scholar
First citation Takagi, S., Joesten, M. D. & Lenhert, P. G. (1975). Potassium lead hexanitronickelate(II). Acta Cryst. B31, 1968–1970.Google Scholar








































to end of page
to top of page