4.3. Symbols for space groups

By E. F. Bertaut

4.3.1. Triclinic system

There are only two triclinic space groups, $P 1$ (1) and $P \overline{1}$ (2). $P 1$ is quite outstanding because all its subgroups are also $P 1$. They are listed in Table 13.2.2.1 for indices up to [7]. P1 has subgroups $P 1$, isomorphic, and $P 1$, non-isomorphic.

In the triclinic system, a primitive unit cell can always be selected. In some cases, however, it may be advantageous to select a larger cell, with A, B, C, I or F centring.

The two types of reduced bases (reduced cells) are discussed in Section 9.2.2.

4.3.2. Monoclinic system

4.3.2.1. Historical note and arrangement of the tables

In $I T$ (1935) only the b axis was considered as the unique axis. In IT (1952) two choices were given: the c-axis setting was called the 'first setting' and the b-axis setting was designated the 'second setting'.

To avoid the presence of two standard space-group symbols side by side, in the present tables only one standard short symbol has been chosen, that conforming to the long-lasting tradition of the b axis unique ($c f$. Sections 2.2.4 and 2.2.16). However, for reasons of rigour and completeness, in Table 4.3.2.1 the full symbols are given not only for the c-axis and the b-axis settings but also for the a-axis setting. Thus, Table 4.3.2.1 has six columns which in pairs refer to these three settings. In the headline, the unique axis of each setting is underlined.

Additional complications arise from the presence of fractional translations due to glide planes in the primitive cell [groups Pc (7), $P 2 / c$ (13), $P 2_{1} / c$ (14)], due to centred cells [C2 (5), $C m$ (8), $C 2 / m$ (12)], or due to both [$C c$ (9), $C 2 / c$ (15)]. For these groups, three different choices of the two oblique axes are possible which are called 'cell choices' 1,2 and 3 (see Section 2.2.16). If this is combined with the three choices of the unique axis, $3 \times 3=9$ symbols result. If we add the effect of the permutation of the two oblique axes (and simultaneously reversing the sense of the unique axis to keep the system right-handed, as in abc and cb̄a), we arrive at the $9 \times 2=18$ symbols listed in Table 4.3.2.1 for each of the eight space groups mentioned above.

The space-group symbols $P 2$ (3), $P 2_{1}$ (4), $P m$ (6), $P 2 / m$ (10) and $P 2_{1} / m$ (11) do not depend on the cell choice: in these cases, one line of six space-group symbols is sufficient.

For space groups with centred lattices (A, B, C, I), extended symbols are given; the 'additional symmetry elements' (due to the centring) are printed in the half line below the space-group symbol.

The use of the present tabulation is illustrated by two examples, $P m$, which does not depend on the cell choice, and $C 2 / c$, which does.

Examples

(1) Pm (6)
(i) Unique axis b

In the first column, headed by abd, one finds the full symbol $P 1 m 1$. Interchanging the labels of the oblique axes a and c does not change this symbol, which is found again in the second column headed by cōa.
(ii) Unique axis c

In the third column, headed by abc, one finds the symbol $P 11 m$. Again, this symbol is conserved in the interchange of the oblique axes a and b, as seen in the fourth column headed by bac̄.

The same applies to the setting with unique axis a, columns five and six.
(2) $C 2 / c$ (15)

The short symbol $C 2 / c$ is followed by three lines, corresponding to the cell choices $1,2,3$. Each line contains six full space-group symbols.
(i) Unique axis b

The column headed by abc contains the three symbols $C 12 / c 1, A 12 / n 1$ and $I \overline{1} 2 / a 1$, equivalent to the short symbol $C 2 / c$ and corresponding to the cell choices $1,2,3$. In the half line below each symbol, the additional symmetry elements are indicated (extended symbol). If the oblique axes a and c are interchanged, the column under cba lists the symbols A1 2/a $1, C 12 / n 1$ and $I 12 / c 1$ for the three cell choices.
(ii) Unique axis c

The column under abc contains the symbols $A 112 / a, B 112 / n$ and $I 112 / b$, corresponding to the cell choices 1,2 and 3 . If the oblique axes a and b are interchanged, the column under bace applies.

Similar considerations apply to the a-axis setting.

4.3.2.2. Transformation of space-group symbols

How does a monoclinic space-group symbol transform for the various settings of the same unit cell? This can be easily recognized with the help of the headline of Table 4.3.2.1, completed to the following scheme:

The use of this three-line scheme is illustrated by the following examples.

Examples
(1) $C 2 / c$ (15, unique axis b, cell choice 1$)$

Extended symbol: C1 $2 / c 1$.

$$
2_{1} / n
$$

Consider the setting cab, first line, third column. Compared to the initial setting abc, it contains the 'unique axis b ' in the third place and, consequently, must be identified with the setting abc, unique axis c, in the third column, for which in Table 4.3.2.1 the new symbol for cell choice 1 is listed as $A 112 / a$

$$
2_{1} / n
$$

(2) $C 2 / c$ (15, unique axis b, cell choice 3)

Extended symbol: I1 $2 / a 1$.

$$
2_{1} / c
$$

Consider the setting $\overline{\mathbf{b} a c}$ in the first line, sixth column. It contains the 'unique axis b ' in the first place and thus must be identified with the setting a्acb, unique axis a, in the sixth column. From Table 4.3.2.1, the appropriate space-group symbol for cell choice 3 is found as $I 2 / b 11$.

$$
2_{1} / c
$$

4.3.2.3. Group-subgroup relations

It is easy to read all monoclinic maximal t and k subgroups of types I and IIa directly from the extended full symbols of a space group. Maximal subgroups of types IIb and IIc cannot be recognized by simple inspection of the synoptic Table 4.3.2.1

4.3. SYMBOLS FOR SPACE GROUPS

Table 4.3.2.1. Index of symbols for space groups for various settings and cells
TRICLINIC SYSTEM

No. of space group	Schoenflies symbol	Hermann-Mauguin symbol for all settings of the same unit cell
1	C_{1}^{1}	$P 1$
2	C_{i}^{1}	$P \overline{1}$

MONOCLINIC SYSTEM

No. of space group	Schoenflies symbol	Standard short HermannMauguin symbol	Extended Hermann-Mauguin symbols for various settings and cell choices						
			abc	c $\underline{\text { b }}$ a	abc	bace	abc		Unique axis b Unique axis c Unique axis a
3	C_{2}^{1}	P2	P121	P121	P112	P112	P211	P211	
4	C_{2}^{2}	$P 2_{1}$	$P 12{ }_{1} 1$	$P 1211$	P1121 ${ }_{1}$	P112 ${ }_{1}$	$P 2_{1} 11$	$P 2_{1} 11$	
5	C_{2}^{3}	C2	C121	A121	A112	B112	B211	C211	Cell choice 1
			21	21	21	21	21	21	
			A121	C121	B112	A112	C211	B211	Cell choice 2
			21	21	21	21	21	21	
			I121	I121	I112	I112	I211	I211	Cell choice 3
			21	21	21	21	21	21	
6	C_{s}^{1}	Pm	$P 1 m 1$	$P 1 m 1$	P11m	P11m	Pm11	Pm11	
7	C_{s}^{2}	Pc	$P 1 c 1$	$P 1 a 1$	$P 11 a$	$P 11 b$	Pb11	Pc11	Cell choice 1
			$P 1 n 1$	$P 1 n 1$	P11n	$P 11 n$	Pn11	Pn11	Cell choice 2
			$P 1 a 1$	$P 1 c 1$	$P 11 b$	$P 11 a$	Pc 11	Pb11	Cell choice 3
8	C_{s}^{3}	Cm	C1m1	A1m1	A11m	B11m	Bm11	Cm11	Cell choice 1
			a	c	b	a	c	b	
			A1m1	C1m1	B11m	A11m	Cm11	Bm11	Cell choice 2
			c	a	a	b	b	c	
			I1m1	I1m1	I11m	I11m	Im11	Im 11	Cell choice 3
			n	n	n	n	n	n	
9	C_{s}^{4}	Cc	C1c1	A1a1	A11a	$B 11 b$	Bb11	Cc11	Cell choice 1
			n	n	n	n	n	n	
			A1n1	$C 1 n 1$	$B 11 n$	A11n	Cn11	Bn 11	Cell choice 2
			a	c	b	a	c	b	
			I1a1	I1c1	I11b	I11a	Ic 11	Ib11	Cell choice 3
			c	a	a	b	b	c	
10	$C_{2 h}^{1}$	P2/m	${ }_{P 1}{ }^{2}$	$P 1 \stackrel{2}{1} 1$	P11 2	$P 11 \frac{2}{2}$	$P \stackrel{2}{11}$	$P \stackrel{2}{11}$	Cell choice 1
			$P 1-1$	P1 ${ }_{m}^{1}$	$P 11 \frac{}{m}$	$P 11 \frac{m}{m}$	$P{ }_{m}^{11}$	$P{ }_{m}^{11}$	
			$P 1 \frac{2_{1}}{1} 1$	$P 1 \frac{2_{1}}{1} 1$	$P 11 \frac{2}{2}$	$P 11 \frac{21}{2}$	$P \underline{2_{1}} 11$	$P \underline{21} 11$	
11	$C_{2 h}^{2}$	$P 2{ }_{1} / m$	P1 $\frac{1}{m}$	P1 $\frac{1}{m}$	$P 11 \frac{1}{m}$	$P 11 \frac{1}{m}$	$P \frac{1}{m} 11$	$P \frac{1}{m} 11$	
12	$C_{2 h}^{3}$	$C 2 / m$	$C 1 \frac{2}{m} 1$	A1 2			$B^{2}{ }_{11}$	$C^{2}{ }_{11}$	
				A1 $\frac{1}{m} 1$	A11 $\frac{2}{m}$	B11 $\frac{2}{m}$	$B \frac{2}{m} 11$	$C \frac{1}{m} 11$	
		,	21	21	21	21	21	21	
			a	c	\bar{b}	a	\bar{c}	\bar{b}	
		P2/c	A1 ${ }^{2}$				$C^{2} 11$		
			A1 $\frac{1}{m} 1$	$C 1 \frac{2}{m} 1$	$B 11 \frac{2}{m}$	A11 $\frac{2}{m}$	$C \frac{2}{m} 11$	$B \frac{2}{m} 11$	Cell choice 2
13	$C_{2 h}^{4}$		21	21	21	21	$2{ }_{1}$	21	
			c	a	a	$\frac{\square}{b}$	b	c	
			I1 2	I1 2	111 $\frac{2}{2}$		$I \frac{2}{1} 11$	$\underline{2} 11$	Cell choice 3
			$I 1 \frac{1}{m}$	I1 ${ }_{m} 1$	$111 \frac{1}{m}$	$111 \frac{m}{m}$	$I \frac{111}{}$	$I-11$	Cell choice 3
			21	21	21	21	21	21	
			n	n	n	n	n	n	
			$P 1 \stackrel{2}{-1}$	$P 1 \stackrel{2}{-1}$	$P 11 \stackrel{2}{\square}$	$P 11 \frac{2}{b}$	$P \frac{2}{b} 11$	$P-11$	Cell choice 1
			P1 ${ }_{c}$	$P 1-1$	$P 11-\frac{\square}{a}$	$P 11 \bar{b}$	$P{ }^{\prime}{ }^{11}$	$P_{c}{ }_{c}$	Cell choice 1
			$P{ }^{2}{ }_{1}$	P1 ${ }^{2}$	P11 ${ }^{2}$	P11 ${ }^{2}$	$P^{2} 11$	$P^{2}{ }_{11}$	
			$P 1-1$	$P 1-1$	$P 11-$	$P 11 \frac{}{n}$	$P_{n} 11$	$P_{n}{ }^{11}$	Cell choice 2
			${ }_{P 1}{ }_{1}^{1}$	P1 ${ }^{2}$	P12 ${ }^{2}$		$P^{2}{ }_{11}$	$P^{2} 11$	
			$P 1-1$	$P 1{ }_{c} 1$	${ }^{P 11}{ }_{\bar{b}}$	$P 11{ }_{a}$	$P_{c}{ }_{c} 11$	$P_{\bar{b}} 11$	Cell choice 3

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)
MONOCLINIC SYSTEM (cont.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. of space group} \& \multirow[b]{2}{*}{Schoenflies symbol} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Standard \\
short \\
Hermann- \\
Mauguin \\
symbol
\end{tabular}} \& \multicolumn{6}{|l|}{Extended Hermann-Mauguin symbols for various settings and cell choices} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Unique axis \(b\) \\
Unique axis \(c\) \\
Unique axis \(a\)
\end{tabular}} \\
\hline \& \& \& abc \& cba \& abc \& bace \& \(\underline{\text { abb }}\) \& ācb \& \\
\hline \multirow[t]{4}{*}{14

15} \& \multirow[t]{3}{*}{$C_{2 h}^{5}$} \& \multirow[t]{3}{*}{$P 2_{1} / c$} \& \[
P 1 \frac{2_{1}}{c} 1

\] \& \[

P 1 \frac{2_{1}}{a} 1

\] \& \[

P 11 \frac{2_{1}}{a}
\] \& $P 11 \frac{2_{1}}{b}$ \& $P \frac{2_{1}}{b} 11$ \& $P \frac{2_{1}}{c} 11$ \& Cell choice 1

\hline \& \& \& $P 1 \frac{2_{1}}{n} 1$ \& \[
P 1 \frac{2_{1}}{n} 1

\] \& \[

P 11 \frac{2_{1}}{n}

\] \& \[

P 11 \frac{2_{1}}{n}
\] \& $P \frac{2_{1}}{n} 11$ \& $P \frac{2_{1}}{n} 11$ \& Cell choice 2

\hline \& \& \& $$
P 1 \frac{2_{1}}{a} 1
$$ \& \[

P 1 \frac{2_{1}}{c} 1

\] \& \[

P 11 \frac{2_{1}}{b}

\] \& \[

P 11 \frac{2_{1}}{a}

\] \& \[

P \frac{2_{1}}{c} 11

\] \& \[

P \frac{2_{1}}{b} 11
\] \& Cell choice 3

\hline \& \multirow[t]{9}{*}{$C_{2 h}^{6}$} \& \multirow[t]{9}{*}{C2/c} \& \[
C 1 \frac{2}{c} 1

\] \& \[

A 1 \frac{2}{a} 1
\] \& A11 $\frac{2}{a}$ \& $B 11 \frac{2}{b}$ \& $B \frac{2}{b} 11$ \& $C \frac{2}{c} 11$ \& Cell choice 1

\hline \multirow{8}{*}{15} \& \& \& $$
\frac{2_{1}}{n}
$$ \& \[

\frac{2_{1}}{n}

\] \& \[

\frac{2_{1}}{n}

\] \& \[

\frac{2_{1}}{n}
\] \& $\frac{21}{n}$ \& $\frac{21}{n}$ \&

\hline \& \& \& $$
A 1 \frac{2}{-1}
$$ \& \[

C 1 \frac{2}{-1}

\] \& \[

B 11 \frac{2}{2}
\] \& A11 $\frac{2}{n}$ \& $C \frac{2}{n} 11$ \& $B \frac{2}{1} 11$ \& Cell choice 2

\hline \& \& \& n \& n \& \& \& n \& n \&

\hline \& \& \& $$
\frac{2_{1}}{a}
$$ \& \[

\frac{2_{1}}{c}

\] \& \[

\frac{2_{1}}{b}

\] \& \[

\frac{2_{1}}{a}

\] \& \[

\frac{2_{1}}{c}
\] \& $\frac{2_{1}}{b}$ \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& $$
I 1 \frac{1}{a} 1
$$ \& \[

I 1 \frac{1}{c} 1

\] \& I11 $\frac{1}{b}$ \& I11 $\frac{2}{a}$ \& \[

I \frac{L}{c} 11
\] \& $I \frac{111}{b}$ \& Cell choice 3

\hline \& \& \& 21 \& 21 \& 21 \& 21 \& 21 \& 21 \&

\hline \& \& \& \& $\frac{\square}{a}$ \& \& $\frac{1}{b}$ \& \& c \&

\hline
\end{tabular}

ORTHORHOMBIC SYSTEM

No. of space group	Schoenflies symbol	Standard full HermannMauguin symbol abc	Extended Hermann-Mauguin symbols for the six settings of the same unit cell					
			abc (standard)	bac	cab	$\overline{\text { chba }}$	bca	ac̄b
16	D_{2}^{1}	P222						
17	D_{2}^{2}	$P 222_{1}$	$P 222_{1}$	$P 222_{1}$	$P 2_{1} 22$	$P 2_{1} 22$	$P 22{ }_{1} 2$	$P 22{ }_{1} 2$
18	D_{2}^{3}	$P 2{ }_{1}{ }_{1} 2$	$P 2{ }_{1} 2_{1} 2$	$P 2{ }_{1}{ }_{1} 2$	$P 22_{1} 2_{1}$	$P 22_{1} 2_{1}$	$P 2_{1} 22_{1}$	$P 2_{1} 22_{1}$
19	D_{2}^{4}	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
20	D_{2}^{5}	C222 ${ }_{1}$	$\begin{gathered} C 222_{1} \\ 2_{1} 2_{1} 2_{1} \end{gathered}$	$\begin{gathered} C 222_{1} \\ 2_{1} 2_{1} 2_{1} \end{gathered}$	$\begin{gathered} A 2_{1} 22 \\ 2_{1} 2_{1} 2_{1} \end{gathered}$	$\begin{gathered} A 2_{1} 22 \\ 2_{1} 2_{1} 2_{1} \end{gathered}$	$\begin{gathered} B 22_{1} 2 \\ 2_{1} 2_{1} 2_{1} \end{gathered}$	$\begin{gathered} B 22_{1} 2 \\ 2_{1} 2_{1} 2_{1} \end{gathered}$
21	D_{2}^{6}	C222	$\begin{aligned} & C 222 \\ & 2_{1} 2_{1} 2 \end{aligned}$	$\begin{aligned} & C 222 \\ & 2_{1} 2_{1} 2 \end{aligned}$	$\begin{gathered} A 222 \\ 22_{1} 2_{1} \end{gathered}$	$\begin{array}{\|c} A 222 \\ 22_{1} 2_{1} \end{array}$	$\begin{aligned} & B 222 \\ & 2_{1} 22_{1} \end{aligned}$	$\begin{gathered} B 222 \\ 2_{1} 22_{1} \end{gathered}$
22	D_{2}^{7}	F222	F222	F222	F222	F222	F222	$F 222$
			$22_{1} 2$	$2_{12}{ }_{1} 2$	$22_{1} 2_{1}$	$22_{1} 2_{1}$	$2_{1} 22_{1}$	$2_{1} 22_{1}$
			$22_{1} 2_{1}$	22_{1}	$2_{1} 22_{1}$	$22_{12} 2$	$2_{1} 2_{1} 2$	$22_{1} 2_{1}$
			$22_{1}{ }_{1}$	$22_{1} 2_{1}$	$2_{1} 212$	$2_{1} 22_{1}$	$22_{1} 2_{1}$	$22_{1} 2$
23	D_{2}^{8}	I222						
			$2_{1} 2_{1} 2_{1}$	$2_{1} 2_{1} 2_{1}$	$22_{1} 2_{1}$	$2_{1} 2_{1} 2_{1}$	$22_{1} 2_{1}$	$22_{1} 2_{1}$
24	D_{2}^{9}	$I 21_{1} 1_{1} 2_{1}$	$I 2_{1} 2_{1} 2_{1}$					
			222	222	222	222	222	222
25	$C_{2 v}^{1}$	Pmm2	Pmm2	Pmm2	P2mm	P2mm	Pm2m	Pm2m
26	$C_{2 v}^{2}$	Pmc 2_{1}	Pmc2 ${ }_{1}$	Pcm 2_{1}	$P 2{ }_{1} m a$	$P 2_{1}$ am	$P b 2{ }_{1} m$	Pm2 ${ }_{1} b$
27	$C_{2 v}^{3}$	Pcc 2	Pcc 2	Pcc 2	P2aa	P2aa	Pb2b	Pb2b
28	$C_{2 v}^{4}$	Pma 2	Pma 2	Pbm 2	P2mb	P2cm	Pc2m	Pm2a
29	$C_{2 v}^{5}$	Pca2 ${ }_{1}$	Pca ${ }_{1}$	$P b c 2_{1}$	$P 2{ }_{1} a b$	$P 2{ }_{1} \mathrm{ca}$	$P c 2{ }_{1} b$	$P b 2{ }_{1} a$
30	$C_{2 v}^{6}$	Pnc2	Pnc2	Pcn2	P2na	P2an	Pb2n	Pn2b
31	$C_{2 v}^{7}$	Pmn2 ${ }_{1}$	Pmn21	Pnm2 ${ }_{1}$	$P 2{ }_{1} \mathrm{mn}$	$P 2{ }_{1} \mathrm{~nm}$	$P n 2{ }_{1} m$	Pm2 ${ }_{1}$ n
32	$C_{2 v}^{8}$	Pba 2	Pba2	Pba 2	$P 2 c b$	$P 2 \mathrm{cb}$	Pc2a	Pc2a
33	$C_{2 v}^{9}$	Pna2 ${ }_{1}$	Pna2 ${ }_{1}$	Pbn2 ${ }_{1}$	$P 2{ }_{1} n b$	$P 2{ }_{1}$ cn	$P c 2{ }_{1} n$	$P n 2{ }_{1} a$
34	$C_{2 v}^{10}$	Pnn2	Pnn2	Pnn2	$P 2 n n$	$P 2 n n$	Pn2n	Pn2n

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)
ORTHORHOMBIC SYSTEM (cont.)

No. of space group	Schoenflies symbol	Standard full HermannMauguin symbol abc	Extended Hermann-Mauguin symbols for the six settings of the same unit cell					
			abc (standard)	bace	cab	$\overline{\text { çba }}$	bca	aç
35	$C_{2 v}^{11}$	Cmm2	$\begin{gathered} C m m 2 \\ b a 2 \end{gathered}$	$\begin{gathered} \text { Cmm2 } \\ b a 2 \end{gathered}$	$\begin{gathered} A 2 \mathrm{~mm} \\ 2 \mathrm{cb} \end{gathered}$	$\begin{gathered} A 2 \mathrm{~mm} \\ 2 \mathrm{cb} \end{gathered}$	$\begin{gathered} B m 2 m \\ c 2 a \end{gathered}$	$\begin{gathered} B m 2 m \\ c 2 a \end{gathered}$
36	$C_{2 v}^{12}$	$C m c 21$	$\begin{array}{r} C m c 2_{1} \\ b n 2_{1} \end{array}$	$\begin{array}{r} \mathrm{Ccm} 2_{1} \\ n a 2_{1} \end{array}$	$\begin{gathered} A 2_{1} m a \\ 2_{1} c n \end{gathered}$	$\begin{gathered} A 2_{1} a m \\ 2_{1} n b \end{gathered}$	$\begin{gathered} B b 2_{1} m \\ n 2_{1} a \end{gathered}$	$\begin{gathered} B m 2_{1} b \\ c 2_{1} n \end{gathered}$
37	$C_{2 v}^{13}$	Ccc2	$\begin{array}{r} C c c 2 \\ n n 2 \end{array}$	$\begin{array}{r} C c c 2 \\ n n 2 \end{array}$	$\begin{array}{r} A 2 a a \\ 2 n n \end{array}$	$\begin{array}{r} A 2 a a \\ 2 n n \end{array}$	$\begin{array}{r} B b 2 b \\ n 2 n \end{array}$	$\begin{array}{r} B b 2 b \\ n 2 n \end{array}$
38	$C_{2 v}^{14}$	Amm 2	$\begin{array}{r} A m m 2 \\ n c 2_{1} \end{array}$	$\begin{array}{r} B m m 2 \\ \mathrm{cn} 2_{1} \end{array}$	$\begin{array}{r} B 2 m m \\ 2_{1} n a \end{array}$	$\begin{array}{r} C 2 m m \\ 2_{1} a n \end{array}$	$\begin{array}{r} C m 2 m \\ b 2{ }_{1} n \end{array}$	$\begin{array}{r} A m 2 m \\ n 2_{1} b \end{array}$
39*	$C_{2 v}^{15}$	Aem 2	$\begin{array}{r} \text { Aem } 2 \\ e c 2_{1} \end{array}$	$\begin{array}{r} B m e 2 \\ c e 2_{1} \end{array}$	$\begin{array}{\|c} B 2 \mathrm{em} \\ 2_{1} e a \end{array}$	$\begin{array}{r} C 2 m e \\ 2_{1} a e \end{array}$	$\begin{array}{r} C m 2 e \\ b 2_{1} e \end{array}$	$\begin{array}{r} A e 2 m \\ e 2_{1} b \end{array}$
40	$C_{2 v}^{16}$	Ama 2	$\begin{array}{r} \text { Ama2 } \\ n n 2_{1} \end{array}$	Bbm 2 $n n 2_{1}$	$\begin{array}{\|r\|r\|} B 2 m b \\ 2_{1} n n \end{array}$	$\begin{gathered} C 2 c m \\ 2_{1} n n \end{gathered}$	$\begin{gathered} C c 2 m \\ n 2{ }_{1} n \end{gathered}$	$\begin{array}{r} A m 2 a \\ n 2_{1} n \end{array}$
41*	$C_{2 v}^{17}$	Aea 2	$\begin{gathered} \text { Aea } 2 \\ e n 2_{1} \end{gathered}$	Bbe 2 $n e 2_{1}$	$\begin{gathered} B 2 e b \\ 2_{1} e n \end{gathered}$	$\begin{aligned} & C 2 c e \\ & 2_{1} n e \end{aligned}$	$\begin{gathered} C c 2 e \\ n 2_{1} e \end{gathered}$	$\begin{gathered} A e 2 a \\ e 2_{1} n \end{gathered}$
42	$C_{2 v}^{18}$	Fmm 2	$\begin{gathered} F m m 2 \\ b a 2 \\ n c 2_{1} \\ c n 2_{1} \end{gathered}$	$\begin{gathered} \text { Fmm2 } \\ b a 2 \\ c n 2_{1} \\ n c 2_{1} \end{gathered}$	$\begin{gathered} F 2 m m \\ 2 c b \\ 2_{1} n a \\ 2_{1} a n \end{gathered}$	$\begin{gathered} F 2 m m \\ 2 c b \\ 2_{1} a n \\ 2_{1} n a \end{gathered}$	$\begin{gathered} F m 2 m \\ c 2 a \\ b 2_{1} n \\ n 2_{1} b \end{gathered}$	$\begin{gathered} F m 2 m \\ c 2 a \\ n 2{ }_{1} b \\ b 2{ }_{1} n \end{gathered}$
43	$C_{2 v}^{19}$	$F d d 2$	$F d d 2$ $d d 2_{1}$	Fdd2 $d d 2_{1}$	$F 2 d d$ $2{ }_{1} d d$	$\begin{aligned} & F 2 d d \\ & 2_{1} d d \end{aligned}$	$\begin{aligned} & F d 2 d \\ & \quad d 2_{1} d \end{aligned}$	$\begin{gathered} F d 2 d \\ \quad d 2_{1} d \end{gathered}$
44	$C_{2 v}^{20}$	Imm 2	$\begin{array}{r} \text { Imm2 } \\ n n 2_{1} \end{array}$	$\begin{array}{r} \text { Imm2 } \\ n n 2_{1} \end{array}$	$\begin{aligned} & I 2 \mathrm{~mm} \\ & 2_{1} n n \end{aligned}$	$\begin{array}{\|r} I 2 m m \\ 2_{1} n n \end{array}$	$\begin{gathered} \operatorname{Im} 2 m \\ n 2_{1} n \end{gathered}$	$\begin{array}{r} \operatorname{Im} 2 m \\ n 2_{1} n \end{array}$
45	$C_{2 v}^{21}$	Iba 2	Iba 2 cc $2{ }_{1}$	Iba 2 cc2 ${ }_{1}$	$\begin{array}{\|} I 2 c b \\ 2{ }_{1} a a \end{array}$	$\begin{array}{\|c} I 2 c b \\ 2_{1} a a \end{array}$	$\begin{array}{r} I c 2 a \\ \quad b 2_{1} b \end{array}$	$\begin{array}{r} I c 2 a \\ b 2_{1} b \end{array}$
46	$C_{2 v}^{22}$	Ima 2	$\begin{gathered} \text { Ima2 } \\ n c 2_{1} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Ibm2} 2 \\ \mathrm{cn} 2_{1} \\ \hline \end{array}$	I2mb $2{ }_{1} n a$	$\begin{aligned} & I 2 \mathrm{~cm} \\ & 2_{1} a n \end{aligned}$	$\begin{gathered} I c 2 m \\ \quad b 2_{1} n \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Im} 2 a \\ n 2_{1} b \\ \hline \end{gathered}$
47	$D_{2 h}^{1}$	$P \frac{2}{m} \frac{2}{m} \frac{2}{m}$	Pmmm	Pmmm	Pmmm	Pmmm	Pmmm	Pmmm
48	$D_{2 h}^{2}$	$P \frac{22-2}{n} \frac{2}{n}$	Pnnn	Pnnn	Pnnn	Pnnn	Pnnn	Pnnn
49	$D_{2 h}^{3}$	$P \frac{22}{c} \frac{2}{c} \frac{2}{m}$	Pccm	Pccm	Pmaa	Pmaa	Pbmb	Pbmb
50	$D_{2 h}^{4}$	$P \frac{2}{b} \frac{2}{a} \frac{2}{n}$	Pban	Pban	Pncb	Pncb	Pcna	Pcna
51	$D_{2 h}^{5}$	$P \frac{2_{1}}{m} \frac{2}{m} \frac{2}{a}$	Pmma	Pmmb	Pbmm	Pcmm	Pmcm	Pmam
52	$D_{2 h}^{6}$	$P \frac{2}{n} \frac{2}{n} \frac{2}{a}$	Pnna	Pnnb	Pbnn	Pcnn	Pncn	Pnan
53	$D_{2 h}^{7}$	$P \frac{2}{m} \frac{2}{n} \frac{2}{a}$	Pmna	Pnmb	Pbmn	Pcnm	Pncm	Pman
54	$D_{2 h}^{8}$	$P \frac{2_{1}}{c} \frac{2}{c} \frac{2}{a}$	Pcca	Pccb	Pbaa	Pcaa	Pbcb	Pbab
55	$D_{2 h}^{9}$	$P \frac{2_{1}}{b} \frac{2_{1}}{a} \frac{2}{m}$	Pbam	Pbam	Pmcb	Pmcb	Pcma	Pcma
56	$D_{2 h}^{10}$	$P \frac{2_{1}}{c} \frac{2_{1}}{c} \frac{2}{n}$	Pccn	Pccn	Pnaa	Pnaa	Pbnb	Pbnb
57	$D_{2 h}^{11}$	$P \frac{2}{b} \frac{2_{1}}{c} \frac{2_{1}}{m}$	Pbcm	Pcam	Pmca	Pmab	Pbma	Pcmb
58	$D_{2 h}^{12}$	$P \frac{2_{1}}{n} \frac{2_{1}}{n} \frac{2}{m}$	Pnnm	Pnnm	Pmnn	Pmnn	Pnmn	Pnmn
59	$D_{2 h}^{13}$	$P \frac{2_{1}}{m} \frac{2_{1}}{m} \frac{2}{n}$	Pmmn	Pmmn	Pnmm	Pnmm	Pmnm	Pmnm
60	$D_{2 h}^{14}$	$P \frac{2_{1}}{b} \frac{2}{c} \frac{2_{1}}{n}$	Pbcn	Pcan	Pnca	Pnab	Pbna	Pcnb
61	$D_{2 h}^{15}$	$P \frac{2_{1}}{b} \frac{2_{1}}{c} \frac{2_{1}}{a}$	Pbca	Pcab	Pbca	Pcab	Pbca	Pcab

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)
ORTHORHOMBIC SYSTEM (cont.)

No. of space group	Schoenflies symbol	Standard full Hermann- Mauguin symbol abc	Extended Hermann-Mauguin symbols for the six settings of the same unit cell					
			abc (standard)	bac	cab	c̄ba	bca	açb
62	$D_{2 h}^{16}$	$P \frac{2_{1}}{n} \frac{2_{1}}{m} \frac{2_{1}}{a}$	Pnma	Pmnb	Pbnm	Pcmn	Pmen	Pnam
63	$D_{2 h}^{17}$	$C \frac{2}{m} \frac{2}{c} \frac{2_{1}}{m}$	Cmсm bnn	Ccmm nan	Amma ncn	Amam nnb	Bbmm nna	$\begin{gathered} \text { Bmmb } \\ \text { cnn } \end{gathered}$
64* \dagger	$D_{2 h}^{18}$	$C \frac{2}{m} \frac{2}{c} \frac{2}{e}$	Cmes bne	Ccme nae	Aema ecn	Aeam enb	Bbem nea	$\begin{gathered} \text { Bmeb } \\ \text { cen } \end{gathered}$
65	$D_{2 h}^{19}$	$C \frac{2}{m} \frac{2}{m} \frac{2}{m}$	$\begin{gathered} \text { Cmmm } \\ \text { ban } \end{gathered}$	Cmmm ban	Ammm $n c b$	Ammm $n c b$	Bmmm cna	$\begin{gathered} \text { Bmmm } \\ \text { cna } \end{gathered}$
66	$D_{2 h}^{20}$	$C \frac{2}{c} \frac{2}{c} \frac{2}{m}$	$\begin{array}{r} \text { Cccm } \\ \text { nnn } \end{array}$	$\begin{array}{r} \text { Cccm } \\ \text { nnn } \end{array}$	Amaa nnn	Amaa nnn	Bbmb nnn	Bbmb nnn
67* \dagger	$D_{2 h}^{21}$	$C \frac{2}{m} \frac{2}{m} \frac{2}{e}$	Cmте bae	Cmme bae	Aemm ecb	Aemm ecb	Bmem сеа	Bтет сеа
68*	$D_{2 h}^{22}$	$C \frac{22}{c} \frac{2}{c} \frac{2}{e}$	Ccce nne	Ccce nne	Aeaa enn	Aeaa enn	Bbeb nen	Bbeb nen
69	$D_{2 h}^{23}$	$F \frac{2}{m} \frac{2}{m} \frac{2}{m}$	Fmmm ban $n c b$ cna	Fmmm ban cna $n c b$	Fmmm $n c b$ cna ban	Fmmm $n c b$ ban cna	Fmmm cna ban $n c b$	Fmmm cna $n c b$ ban
70	$D_{2 h}^{24}$	$F \frac{2}{d} \frac{2}{d} \frac{2}{d}$	Fddd	Fddd	Fddd	Fddd	Fddd	Fddd
71	$D_{2 h}^{25}$	$I \frac{2}{m} \frac{2}{m} \frac{2}{m}$	I mmm nnn	$I \mathrm{mmm}$ nnn	I mmm nnn	I mmm nnn	I mmm nnn	I mmm nnn
72	$D_{2 h}^{26}$	$I \frac{22}{b} \frac{2}{a} \frac{2}{m}$	I bam ccn	I bam ccn	$\begin{array}{\|r} \text { I mcb } \\ \text { naa } \end{array}$	I mcb naa	I cma bnb	I cma bnb
73	$D_{2 h}^{27}$	$I \frac{2_{1}}{b} \frac{2_{1}}{c} \frac{2_{1}}{a}$	I bca $c a b$	$\begin{array}{r} I c a b \\ b c a \end{array}$	I bca $c a b$	I cab $b c a$	I bca $c a b$	I cab bca
$74 \dagger$	$D_{2 h}^{28}$	$I \frac{2_{1}}{m} \frac{2_{1}}{m} \frac{2_{1}}{a}$	I mma nnb	I mmb nna	I bmm cnn	I cmm bnn	I mcm nan	I mam ncn

* For the five space groups Aem2 (39), Aea2 (41), Cmce (64), Cmme (67) and Ccce (68), the 'new' space-group symbols, containing the symbol ' e ' for the 'double' glide plane, are given for all settings. These symbols were first introduced in the Fourth Edition of this volume (IT 1995); cf. Foreword to the Fourth Edition. For further explanations, see Section 1.3.2, Note (x) and the space-group diagrams.
\dagger For space groups Cmса (64), Cmma (67) and Imma (74), the first lines of the extended symbols, as tabulated here, correspond with the symbols for the six settings in the diagrams of these space groups (Part 7). An alternative formulation which corresponds with the coordinate triplets is given in Section 4.3.3.

TETRAGONAL SYSTEM

No. of space group		Hermann-Mauguin symbols for standard cell P or I		Multiple cell C or F	
		Short	Extended	Short	Extended
75	C_{4}^{1}	$P 4$		C4	
76	C_{4}^{2}	$P 4_{1}$		$C 4_{1}$	
77	C_{4}^{3}	$P 4_{2}$		CH_{2}	
78	C_{4}^{4}	$P 4_{3}$		$C 4_{3}$	
79	C_{4}^{5}	I 4	$\begin{gathered} I 4 \\ 4_{2} \end{gathered}$	$F 4$	$\begin{gathered} F 4 \\ 4_{2} \end{gathered}$
80	C_{4}^{6}	$I 4_{1}$	$\begin{array}{r} I 4_{1} \\ 4_{3} \end{array}$	$F 4_{1}$	$\begin{array}{r} F 4_{1} \\ 4_{3} \end{array}$
81	S_{4}^{1}	$P \overline{4}$		$C \overline{4}$	
82	S_{4}^{2}	$I \overline{4}$		$F \overline{4}$	

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols for standard cell P or I		Multiple cell C or F	
		Short	Extended	Short	Extended
83	$C_{4 h}^{1}$	P4/m		C4/m	$\begin{gathered} C 4_{2} / m \\ n \end{gathered}$
84	$C_{4 h}^{2}$	$P 4_{2} / m$		$C 4_{2} / \mathrm{m}$	$\begin{array}{r} C 4_{2} / m \\ n \end{array}$
85	$C_{4 h}^{3}$	$P 4 / n$		$C 4 / a$	$\begin{array}{r} C 4 / a \\ b \end{array}$
86	$C_{4 h}^{4}$	$P 4_{2} / n$		$C 4_{2} / a$	$\begin{array}{r} C 4_{2} / a \\ b \end{array}$
87	$C_{4 h}^{5}$	I 4/m	$\begin{array}{r} I 4 / m \\ 4_{2} / n \end{array}$	$F 4 / m$	$\begin{array}{r} F 4 / m \\ 4_{2} / a \end{array}$
88	$C_{4 h}^{6}$	I $41 / a$	$\begin{array}{r} I 4_{1} / a \\ 4_{3} / b \end{array}$	$F 4_{1} / d$	$\begin{array}{r} F 4_{1} / d \\ 4_{3} / d \end{array}$

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)

TETRAGONAL SYSTEM (cont.)

$\begin{array}{l}\text { No. of } \\ \text { space } \\ \text { group }\end{array}$ 8		Hermann-Mauguin symbols for standard cell P or I		Multiple cell C or F	
		Short	Extended	Short	Extended
89	D_{4}^{1}	P422	$\begin{array}{r} P 422 \\ 2_{1} \end{array}$	C422	$\begin{array}{r} C 422 \\ 2_{1} \end{array}$
90	D_{4}^{2}	$P 4212$	$\begin{array}{r} P 42_{1} 2 \\ 2_{1} \end{array}$	$C 422_{1}$	$\begin{gathered} C 422_{1} \\ 2_{1} \end{gathered}$
91	D_{4}^{3}	$P 4_{1} 22$	$\begin{array}{r} P 4_{1} 22 \\ 2_{1} \end{array}$	$C 4_{1} 22$	$\begin{array}{r} C 4_{1} 22 \\ 2 \end{array}$
92	D_{4}^{4}	$P 4{ }_{1} 2_{1} 2$	$\begin{array}{r} P 4_{1} 2_{1} 2 \\ 2_{1} \end{array}$	$C 4_{1} 22_{1}$	$\begin{gathered} C 4_{1} 22_{1} \\ 2_{1} \end{gathered}$
93	D_{4}^{5}	$P 4_{2} 22$	$\begin{array}{r} P 4_{2} 22 \\ 22_{1} \end{array}$	$\mathrm{C4}_{2} 22$	$\begin{array}{r} C 4_{2} 22 \\ 2 \end{array}$
94	D_{4}^{6}	$P 4_{2} 2_{1} 2$	$\begin{array}{r} P 4_{2} 2_{1} 2 \\ 2_{1} \end{array}$	$C 422{ }_{1}$	$\begin{gathered} C 4_{2} 22_{1} \\ 2_{1} \end{gathered}$
95	D_{4}^{7}	$P 4322$	$\begin{array}{r} P 4_{3} 22 \\ 2_{1} \end{array}$	$C 4322$	$\begin{array}{r} C 4_{3} 22 \\ 2 \end{array}$
96	D_{4}^{8}	$P 4{ }_{3} 2_{1}$	$\begin{array}{r} P 4_{3} 2_{1} 2 \\ 2_{1} \end{array}$	$C 4{ }_{3} 22_{1}$	$\begin{gathered} C 4_{3} 22_{1} \\ 2_{1} \end{gathered}$
97	D_{4}^{9}	I 422	$\begin{aligned} & I 422 \\ & 4_{2} 2_{1} 2_{1} \end{aligned}$	$F 422$	$\begin{array}{r} F 422 \\ 4_{2} 2_{1} 2_{1} \end{array}$
98	D_{4}^{10}	$I 4_{1} 22$	$\begin{aligned} & I 4_{1} 22 \\ & 4_{3} 2_{1} 2_{1} \end{aligned}$	$F 4{ }_{1} 22$	$\begin{aligned} & F 4_{1} 22 \\ & 4_{3} 2_{1} 2_{1} \end{aligned}$
99	$C_{4 v}^{1}$	P4mm	$P 4 m m$	C4mm	$C 4 m m$
100	$C_{4 v}^{2}$	P4bm	$P 4 b m$	$C 4 m g_{1}$	$\begin{gathered} C 4 m g_{1} \\ b \end{gathered}$
101	$C_{4 v}^{3}$	P 42 cm	$\mathrm{PH}_{2} \mathrm{~cm}$	$C 4_{2}$ mc	$C 4_{2} m c$
102	$C_{4 v}^{4}$	$\mathrm{P} 4_{2} \mathrm{~nm}$	$\begin{array}{r} P 4_{2} n m \\ g \end{array}$	C4 $\mathrm{C} \mathrm{mg}_{2}$	$\begin{gathered} C 4_{2} m g_{2} \\ b \end{gathered}$
103	$C_{4 v}^{5}$	$P 4 c c$	$\begin{array}{r} P 4 c c \\ n \end{array}$	C4cc	$\begin{gathered} C 4 c c \\ n \end{gathered}$
104	$C_{4 v}^{6}$	$P 4 n c$	$\begin{array}{r} P 4 n c \\ n \end{array}$	$C 4 \mathrm{cg}_{2}$	$\begin{gathered} C 4 c g_{2} \\ n \end{gathered}$
105	$C_{4 v}^{7}$	$P 4{ }_{2} m c$	$\begin{array}{r} P 4_{2} m c \\ n \end{array}$	$\mathrm{C4}_{2} \mathrm{~cm}$	$\begin{gathered} C 4_{2} \mathrm{~cm} \\ n \end{gathered}$
106	$C_{4 v}^{8}$	$P 4_{2} b c$	$\begin{array}{r} P 4_{2} b c \\ n \end{array}$	C42 cg_{1}	$\begin{gathered} C 4_{2} c g_{1} \\ n \end{gathered}$
107	$C_{4 v}^{9}$	I 4mm	$\begin{array}{r} I 4 m m \\ 4_{2} n e \end{array}$	F4mm	F4mm $4_{2} e_{2}$
108	$C_{4 v}^{10}$	I 4 cm	I 4ce $4{ }_{2}$ bm	F4mc	F4ec $4_{2} m g_{1}$
109	$C_{4 v}^{11}$	I 41 md	$\begin{array}{r} I 4_{1} m d \\ 4_{1} n d \end{array}$	$F 4{ }_{1} d m$	$\begin{gathered} F 4_{1} d m \\ 4_{3} d g_{2} \end{gathered}$
110	$C_{4 v}^{12}$	I $41{ }_{1} \mathrm{~cd}$	$\begin{array}{r} I 4_{1} c d \\ 43 b d \end{array}$	$F 4{ }_{1} d c$	$F 4_{1} d c$ $4_{3} d g_{1}$
111	$D_{2 d}^{1}$	$P \overline{4} 2 m$		$C \overline{4} m 2$	$C \overline{4} m 2$
112	$D_{2 d}^{2}$	$P \overline{4} 2 c$		$C \overline{4} c 2$	$\begin{gathered} b \\ C \overline{4} c 2 \end{gathered}$
113	$D_{2 d}^{3}$	$P \overline{4} 2{ }_{1} m$	n $P \overline{4} 2{ }_{1} m$	$C \overline{4} m 2_{1}$	n $C \overline{4} m 2_{1}$
114	$D_{2 d}^{4}$	$P \overline{4} 2{ }_{1} C$		$C \overline{4} c 2_{1}$	c $C \overline{4} c 2_{1}$
115	$D_{2 d}^{5}$	$P \overline{4} m 2$	$\begin{array}{r} n \\ P \overline{4} m 2 \\ 22_{1} \end{array}$	$C \overline{4} 2 m$	$\begin{gathered} n \\ C \overline{4} 2 m \\ 2_{1} \end{gathered}$
116	$D_{2 d}^{6}$	$P \overline{4} c 2$	$\begin{gathered} P \overline{4} c 2 \\ 2_{1} \end{gathered}$	$C \overline{4} 2 c$	$\begin{array}{r} C \overline{4} 2 c \\ 2_{1} \end{array}$
117	$D_{2 d}^{7}$	$P \overline{4} b 2$	$\begin{array}{r} P \overline{4} b 2 \\ 2_{2} \end{array}$	$C \overline{4} 2 g_{1}$	$\begin{gathered} C \overline{4} 2 g_{1} \\ 2 \end{gathered}$
118	$D_{2 d}^{8}$	$P \overline{4} n 2$	$\begin{array}{r} P \overline{4} n 2^{2} \\ 2_{1} \end{array}$	$C \overline{4} 2 g_{2}$	$\begin{gathered} C \overline{4} 2 g_{2} \\ 2_{1} \end{gathered}$

TETRAGONAL SYSTEM (cont.)

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols for standard cell P or I		Multiple cell C or F	
		Short	Extended	Short	Extended
119	$D_{2 d}^{9}$	$I \overline{4} m 2$	$\begin{array}{r} I \overline{4} m 2 \\ n 2_{1} \end{array}$	$F \overline{4} 2 m$	$\begin{aligned} & F \overline{4} 2 m \\ & 2_{1} g_{2} \end{aligned}$
120	$D_{2 d}^{10}$	$I \overline{4} c 2$	$\begin{gathered} I \overline{4} c 2 \\ \quad b 2_{1} \end{gathered}$	$F \overline{4} 2 c$	$\begin{aligned} & F \overline{4} 2 c \\ & 2_{1} n \end{aligned}$
121	$D_{2 d}^{11}$	$I \overline{4} 2 m$	$\begin{array}{r} I \overline{4} 2 m \\ 2_{1} e \end{array}$	$F \overline{4} m 2$	$\begin{array}{r} F \overline{4} m 2 \\ e 2_{1} \end{array}$
122	$D_{2 d}^{12}$	$I \overline{4} 2 d$	$\begin{array}{r} I \overline{4} 2 d \\ 2{ }_{1} d \end{array}$	$F \overline{4} d 2$	$\begin{gathered} F \overline{4} d 2 \\ d 2_{1} \end{gathered}$
123	$D_{4 h}^{1}$	P4/mmm	$\begin{array}{r} P 4 / m 2 / m 2 / m \\ 2 / / g \end{array}$	C4/mmm	$\underset{\mathrm{nb}}{C 4 / \mathrm{mmm}}$
124	$D_{4 h}^{2}$	$P 4 / m c c$	$\begin{array}{ll} P 4 / m & 2 / c \\ & 2 / c \\ & 2_{1} / n \end{array}$	C4/mcc	$\begin{gathered} C 4 / m c c \\ n n \end{gathered}$
125	$D_{4 h}^{3}$	P4/nbm	$\begin{aligned} P 4 / n 2 / b \begin{array}{ll} 2 / m \\ 2_{1} / g \end{array} \end{aligned}$	C4/amg ${ }_{1}$	$\begin{gathered} C 4 / a m g_{1} \\ b b \end{gathered}$
126	$D_{4 h}^{4}$	$P 4 / n n c$	$\begin{array}{ll} P 4 / n & 2 / n \\ & 2 / c \\ & 2_{1} / n \end{array}$	C4/acg 2	$\begin{gathered} C 4 / a c g_{2} \\ b n \end{gathered}$
127	$D_{4 h}^{5}$	P4/mbm	$\begin{array}{lll} P 4 / m & 2_{1} / b & 2 / m \\ & 2_{1} / g \end{array}$	$\mathrm{C} 4 / \mathrm{mmg}_{1}$	$\underset{n b}{C 4 / \mathrm{mmg}_{1}}$
128	$D_{4 h}^{6}$	P4/mnc	$\begin{array}{ll} P 4 / m 2_{1} / n & 2 / c \\ & 2_{1} / n \end{array}$	$\mathrm{C4} / \mathrm{mcg}_{2}$	$\begin{gathered} C 4 / m c g_{2} \\ n n \end{gathered}$
129	$D_{4 h}^{7}$	P4/nmm	$\begin{array}{ll} P 4 / n & 2_{1} / m \\ & 2 / m \\ 2_{1} / g \end{array}$	C4/amm	$\begin{gathered} C 4 a m m \\ b b \end{gathered}$
130	$D_{4 h}^{8}$ D^{9}	$P 4 / n c c$	$\begin{array}{ll} P 4 / n 2_{1} / c & 2 / c \\ & 2_{1} / n \end{array}$	C4/acc	$\begin{gathered} C 4 / a c c \\ b n \end{gathered}$
131	$D_{4 h}^{9}$	$P 4_{2} / m m c$	$\begin{array}{r} P 4_{2} / m 2 / m 2 / c \\ 2_{1} / n \end{array}$	$\mathrm{C4}_{2} / \mathrm{mcm}$	$\begin{gathered} C 4_{2} / \mathrm{mcm} \\ n n \end{gathered}$
132	$D_{4 h}^{10}$	$\mathrm{P4}_{2} / \mathrm{mcm}$	$\begin{array}{r} P 4_{2} / m 2 / c 2 / m \\ 2 / g \end{array}$	$C 4_{2} / m m c$	$\begin{gathered} C 4_{2} / m m c \\ n b \end{gathered}$
133	$D_{4 h}^{11}$	$P 4_{2} / n b c$	$\begin{array}{r} P 4_{2} / n 2 / b 2 / c \\ 2_{1} / n \end{array}$	$C 4_{2} /$ acg $_{1}$	$\begin{gathered} C 4_{2} / a c g_{1} \\ b n \end{gathered}$
134	$D_{4 h}^{12}$	$P 4_{2} / n n m$	$\begin{array}{r} P 4_{2} / n 2 / n 2 / m \\ 2_{1} / g \end{array}$	$\mathrm{C4}_{2} / \mathrm{amg}_{2}$	$\begin{gathered} C 4_{2} / a m g_{2} \\ b b \end{gathered}$
135	$D_{4 h}^{13}$	$P 4_{2} / m b c$	$\begin{array}{r} P 4_{2} / m 2_{1} / b 2 / c \\ 2_{1} / n \end{array}$	$C 4_{2} / m c g_{1}$	$\begin{gathered} C 4_{2} / m c g_{1} \\ n n \end{gathered}$
136	$D_{4 h}^{14}$ D_{4}^{15}	$\mathrm{P4}_{2} / \mathrm{mnm}$	$\begin{array}{r} P 4_{2} / m 2_{1} / n 2 / m \\ 2_{1} / g \end{array}$	$\mathrm{C4}_{2} / \mathrm{mmg}_{2}$	$\begin{gathered} \mathrm{C4}_{2} / \mathrm{mmg}_{2} \\ n b \end{gathered}$
137	$D_{4 h}^{15}$	$P 4_{2} / n m c$	$\begin{array}{r} P 4_{2} / n 2_{1} / m 2 / c \\ 2_{1} / n \end{array}$	$\mathrm{C4}_{2} / \mathrm{acm}$	$\begin{gathered} C 4_{2} / a c m \\ b n \end{gathered}$
138	$D_{4 h}^{16}$	$\mathrm{P4}_{2} / \mathrm{ncm}$	$\begin{array}{r} P 4_{2} / n 2_{1} / c 2 / m \\ 2_{1} / g \end{array}$	$C 4_{2} / \mathrm{amc}$	$\begin{gathered} C 4_{2} / a m c \\ b b \end{gathered}$
139	$D_{4 h}^{17}$ $D_{4 h}^{18}$	I4/mmm	$\begin{array}{ccc} I 4 / m & 2 / m & 2 / m \\ 4_{2} / n & 2_{1} / n & 2_{1} / e \end{array}$	F4/mmm	$\begin{array}{r} F 4 / \mathrm{mmm}^{2} \\ 4_{2} / \text { aeg }_{2} \end{array}$
140	$D_{4 h}^{18}$	I4/mcm	$\begin{array}{ccc} I 4 / m & 2 / c & 2 / e \\ 4_{2} / n & 2_{1} / b & 2_{1} / m \end{array}$	$F 4 / m m c$	$\begin{aligned} & F 4 / m e c \\ & 4_{2} / a m g_{1} \end{aligned}$
141	$D_{4 h}^{19}$	I $4_{1} /$ amd	$\begin{array}{cc} I 4_{1} / a & 2 / m \\ 4_{3} / b & 2 / d \\ 2_{1} / n & 2_{1} / d \end{array}$	$F 4_{1} / d d m$	$\begin{array}{r} F 4_{1} / d d m \\ 4_{3} / d d g_{2} \end{array}$
142	$D_{4 h}^{20}$	I4 $1^{\text {/acd }}$	$\begin{gathered} I 4_{1} / a \end{gathered} 2 / c \quad 2 / d$	$F 4_{1} / d d c$	$\begin{gathered} F 4_{1} / d d c \\ 4_{3} / d d g_{1} \end{gathered}$

Note: The glide planes g, g_{1} and g_{2} have the glide components $g\left(\frac{1}{2}, \frac{1}{2}, 0\right), g_{1}\left(\frac{1}{4}, \frac{1}{4}, 0\right)$ and $g_{2}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$. For the glide plane symbol ' e ', see the Foreword to the Fourth Edition (IT 1995) and Section 1.3.2, Note (x).

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)

TRIGONAL SYSTEM

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols for standard cell P or R			Triple cell H
		Short	Full	Extended	
143	C_{3}^{1}	P3			H3
144	C_{3}^{2}	$P 3_{1}$			H3 ${ }_{1}$
145	C_{3}^{3}	$P 3_{2}$			H_{2}
146	C_{3}^{4}	R3		R3	
				$3_{1,2}$	
147	$C_{3 i}^{1}$	$P \overline{3}$			$H \overline{3}$
148	$C_{3 i}^{2}$	$R \overline{3}$		$R \overline{3}$	
				$3_{1,2}$	
149	D_{3}^{1}	P312		P312	H321
				21	
150	D_{3}^{2}	P321		P321	H312
				$2{ }_{1}$	
151	D_{3}^{3}	$P 3{ }_{1} 12$		$P 3_{1} 12$	H3 ${ }_{1} 21$
				21	
152	D_{3}^{4}	$P 3{ }_{1} 21$		$P 3121$	$H 3_{1} 12$
				21	
153	D_{3}^{5}	$P 3{ }_{2} 12$		$P 3_{2} 12$	$H 3221$
				21	
154	D_{3}^{6}	$P 3_{2} 21$		$P 3_{2} 21$	$\mathrm{H}_{2} 12$
				21	
155	D_{3}^{7}	R32		R3 2	
				$3_{1,2} 2_{1}$	
156	$C_{3 v}^{1}$	P3m1		P3m1	H31m
				b	
157	$C_{3 v}^{2}$	P31m		P31m	H3m1
				a	
158	$C_{3 v}^{3}$	P3c1		$P 3 \mathrm{c} 1$	H31c
				n	
159	$C_{3 v}^{4}$	P31c		P31c	$H 3 \mathrm{c} 1$
				n	
160	$C_{3 v}^{5}$	R3m		R3 m	
				$3_{1,2} b$	
161	$C_{3 v}^{6}$	$R 3 \mathrm{c}$		R3 c	
				$3_{1,2} n$	
162	$D_{3 d}^{1}$	$P \overline{3} 1 m$	$P \overline{3} 12 / m$	$P \overline{3} 12 / m$	$H \overline{3} m 1$
				- $21 / a$	
163	$D_{3 d}^{2}$	$P \overline{3} 1 c$	$P \overline{3} 12 / c$	$P \overline{3} 12 / c$	$H \overline{3} c 1$
				21/n	
164	$D_{3 d}^{3}$	$P \overline{3} m 1$	$P \overline{3} 2 / m 1$	$P \overline{3} 2 / m 1$	$H \overline{3} 1 m$
				2 $2 / b$	
165	$D_{3 d}^{4}$	$P \overline{3} c 1$	$P \overline{3} 2 / c 1$	$P \overline{3} 2 / c 1$	$H \overline{3} 1 c$
				$R^{2} 3^{2 / n}$	
166	$D_{3 d}^{5}$	$R \overline{3} m$	$R \overline{3} 2 / m$	$R \overline{3} \quad 2 / m$	
				$3_{1,2} 2_{1} / b$	
167	$D_{3 d}^{6}$	$R \overline{3} c$	$R \overline{3} 2 / c$	$R \overline{3} \quad 2 / c$	
				$3_{1,2} 2_{1} / n$	

Example: B 2/b 11 (15, unique axis a)

$$
2_{1} / n
$$

The t subgroups of index [2] (type I) are $B 211(C 2) ; B b 11(C c)$; $B 1(P 1)$.
The k subgroups of index [2] (type IIa) are $P 2 / b 11(P 2 / c)$: $P 2_{1} / b 11\left(P 2_{1} / c\right) ; P 2 / n 11(P 2 / c) ; P 2_{1} / n 11\left(P 2_{1} / c\right)$.
Some subgroups of index [4] (not maximal) are $P 211(P 2)$; $P 2_{1} 11\left(P 2_{1}\right) ; P b 11(P c) ; P n 11(P c) ; P \overline{1} ; B 1(P 1)$.

HEXAGONAL SYSTEM

No. of space group		Hermann-Mauguin symbols for standard cell P			Triple cell H
		Short	Full	Extended	
168	C_{6}^{1}	P6			H6
169	C_{6}^{2}	$P 6_{1}$			H61
170	C_{6}^{3}	$P 6_{5}$			H_{6}
171	C_{6}^{4}	$P 6_{2}$			$\mathrm{H6}_{2}$
172	C_{6}^{5}	$P 64$			H_{6}
173	C_{6}^{6}	$\mathrm{P6}_{3}$			$\mathrm{H6}_{3}$
174	$C_{3 h}^{1}$	$P \overline{6}$			$H \overline{6}$
175	$C_{6 h}^{1}$	P6/m			H6/m
176	$C_{6 h}^{2}$	$P 63 / m$			$\mathrm{H6}_{3} / \mathrm{m}$
177	D_{6}^{1}	P622		P62 2	H622
				22_{1}	
178	D_{6}^{2}	$P 6122$		$P 6{ }_{1} 22$	H6122
				$2_{1} 2_{1}$	
179	D_{6}^{3}	P6522		$P 6522$	H6522
				2121	
180	D_{6}^{4}	$P 6222$		$P 6_{2} 22$	H6222
				2121	
181	D_{6}^{5}	P6422		P642 2	H6422
				2121	
182	D_{6}^{6}	$P 6322$		$P 6_{3} 22$	H6322
				22_{1}	
183	$C_{6 v}^{1}$	P6mm		P6mm	H6mm
				$b a$	
184	$C_{6 v}^{2}$	P6cc		P6cc	H6cc
				$n n$	
185	$C_{6 v}^{3}$	$\mathrm{P6}_{3} \mathrm{~cm}$		$\mathrm{P6}_{3} \mathrm{~cm}$	$\mathrm{H}_{3} \mathrm{mc}$
				na	
186	$C_{6 v}^{4}$	$P 6_{3} m \mathrm{c}$		$P 6{ }_{3} m c$	$\mathrm{H6}_{3} \mathrm{~cm}$
				$b n$	
187	$D_{3 h}^{1}$	$P \overline{6} m 2$		$P \overline{6} m 2$	$H \overline{6} 2 m$
				b 2_{1}	
188	$D_{3 h}^{2}$	$P \overline{6} c 2$		$P \overline{6} c 2$	$H \overline{6} 2 c$
				$n 2_{1}$	
189	$D_{3 h}^{3}$	$P \overline{6} 2 m$		$P \overline{6} 2 m$	$H \overline{6} m 2$
				- $1_{1} a$	
190	$D_{3 h}^{4}$	$P \overline{6} 2 c$		$P \overline{6} 2 \mathrm{c}$	$H \overline{6} c 2$
				21n	
191	$D_{6 h}^{1}$	P6/mmm	$P 6 / m 2 / m 2 / m$	P6/m 2/m 2/m	H6/mmm
				$22_{1} / b 2_{1} / a$	
192	$D_{6 h}^{2}$	P6/mcc	$P 6 / m 2 / c 2 / c$	P6/m 2/c 2/c	H6/mcc
				21/n $21 / n$	
193	$D_{6 h}^{3}$	$P 63 / \mathrm{mcm}$	$P 6{ }_{3} / \mathrm{m} 2 / \mathrm{c} 2 / \mathrm{m}$	$\begin{array}{r} P 6_{3} / m 2 / c 2 / m \\ 2_{1} / b 2_{1} / a \end{array}$	$\mathrm{H}_{3} / \mathrm{mmc}$
194	$D_{6 h}^{4}$	$P 6_{3} / \mathrm{mmc}$	$P 6{ }_{3} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{c}$	$P 6{ }_{3} / m 2 / m 2 / c$	$\mathrm{H} 6_{3} / \mathrm{mcm}$
				$2_{1} / b 2_{1} / n$	

4.3.3. Orthorhombic system

4.3.3.1. Historical note and arrangement of the tables

The synoptic table of $I T$ (1935) contained space-group symbols for the six orthorhombic 'settings', corresponding to the six permutations of the basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$. In $I T$ (1952), left-handed systems like c̄ba were changed to right-handed systems by reversing the orientation of the c axis, as in cba. Note that reversal

4.3. SYMBOLS FOR SPACE GROUPS

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)

CUBIC SYSTEM

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols		
		Short	Full	Extended \dagger
195	T^{1}	P23		
196	T^{2}	$F 23$		$\begin{gathered} F 23 \\ 2 \\ 2_{1} \\ 2_{1} \end{gathered}$
197	T^{3}	I23		$\begin{gathered} I 23 \\ 2_{1} \end{gathered}$
198	T^{4}	P2, 3		
199	T^{5}	I2, 3		$\begin{gathered} I 2_{1} 3 \\ 2 \end{gathered}$
200	T_{h}^{1}	$P m \overline{3}$	$P 2 / m \overline{3}$	
201	T_{h}^{2}	Pn $\overline{3}$	$P 2 / n \overline{3}$	
202	T_{h}^{3}	$F m \overline{3}$	$F / 2 m \overline{3}$	$\begin{array}{\|c} F 2 / m \overline{3} \\ 2 / n \\ 2_{1} / e \\ 2_{1} / e \end{array}$
203	T_{h}^{4}	$F d \overline{3}$	$F 2 / d \overline{3}$	$\begin{array}{\|c} F 2 / d \overline{3} \\ 2 / d \\ 2_{1} / d \\ 2_{1} / d \end{array}$
204	T_{h}^{5}	Im $\overline{3}$	$I 2 / m \overline{3}$	$\begin{gathered} I 2 / m \overline{3} \\ 2_{1} / n \end{gathered}$
205	T_{h}^{6}	$P a \overline{3}$	$P 2_{1} / a \overline{3}$	
206	T_{h}^{7}	$I a \overline{3}$	$I 2{ }_{1} / a \overline{3}$	$\begin{aligned} & I 2_{1} / a \overline{3} \\ & 2 / b \end{aligned}$
207	O^{1}	P432		$\begin{array}{rr} P 432 \\ 22_{1} \end{array}$
208	O^{2}	$P 4232$		$\begin{array}{r} P 4_{2} 32 \\ 2{ }_{1} \end{array}$
209	O^{3}	$F 432$		$\left[\begin{array}{c} F 432 \\ 42 \\ 4_{2} 2_{1} \\ 4_{2} 2_{1} \end{array}\right.$
210	O^{4}	$F 4_{1} 32$		$\left\lvert\, \begin{array}{rl} F 4_{1} & 32 \\ 4_{1} & 2 \\ 4_{3} & 2 \\ 4_{3} & 2_{1} \end{array}\right.$
211	O^{5}	I432		$\begin{array}{cc} I 4 & 32 \\ 42 & 21 \end{array}$
212	O^{6}	$P 4_{3} 32$		$\begin{array}{rl} P 4_{3} & 32 \\ & 2_{1} \end{array}$
213	O^{7}	$P 4_{1} 32$		$\begin{array}{r} P 4_{1} 32 \\ 22_{1} \end{array}$
214	O^{8}	I4, 32		$\begin{array}{rr} I 4_{1} 32 \\ 4_{3} & 21 \end{array}$

CUBIC SYSTEM (cont.)

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols		
		Short	Full	Extended \dagger
215	T_{d}^{1}	$P \overline{4} 3 m$		$P \overline{4} 3 m$
216	T_{d}^{2}	$F \overline{4} 3 m$		F $\stackrel{y}{4} 3 m^{g}$
				g
				g_{2}
				g_{2}
217	T_{d}^{3}	$I \overline{4} 3 \mathrm{~m}$		I $\overline{4} 3 \mathrm{~m}$
218	T_{d}^{4}	$P \overline{4} 3 n$		${ }^{-1}{ }^{\text {e }}$
				$P \overline{4} 3 n$
				c
219	T_{d}^{5}	$F \overline{4} 3 c$		$F \overline{4} 3 n$
				c
				g_{1}
				g_{1}
220	T_{d}^{6}	$I \overline{4} 3 d$		$I \overline{4} 3 \mathrm{~d}$
				d
221	O_{h}^{1}	$\operatorname{Pm} \overline{3} m$	$P 4 / m \overline{3} 2 / m$	$P 4 / m \overline{3} 2 / m$
				2 $2 / \mathrm{g}$
222	O_{h}^{2}	$P n \overline{3} n$	$P 4 / n \overline{3} 2 / n$	$P 4 / n \overline{3} 2 / n$
				2 $2_{1} / c$
223	O_{h}^{3}	$P m \overline{3} n$	$P 4_{2} / m \overline{3} 2 / n$	$P 4_{2} / m \overline{3} 2 / n$
224	O_{h}^{4}	$P n \overline{3} m$	$P 4_{2} / n \overline{3} 2 / m$	$P 4_{2} / n \overline{3} 2 / m$
225	O_{h}^{5}	$F m \overline{3} m$	$F 4 / m \overline{3} 2 / m$	$F 4 / m \overline{3} 2 / m$
				$4 / n \quad 2 / g$
				$4_{2} / e \quad 21 / g_{2}$
				$42 / e \quad 21 / g_{2}$
226	O_{h}^{6}	$F m \overline{3} c$	$F 4 / m \overline{3} 2 / c$	$F 4 / m \overline{3} 2 / n$
				$4 / n \quad 2 / c$
				$4_{2} / e \quad 2 / L_{1}$
				$4{ }_{2} / e \quad 21 / g_{1}$
227	O_{h}^{7}	$F d \overline{3} m$	$F 4_{1} / d \overline{3} 2 / m$	$F 4_{1} / d \overline{3} 2 / m$
				$4_{1} / d 2 / g$
				$4_{3} / d \quad 21 / g_{2}$
				$4_{3} / d 2_{1} / g_{2}$
228	O_{h}^{8}	$F d \overline{3} c$	$F 4_{1} / d \overline{3} 2 / c$	$F 4_{1} / d \overline{3} 2 / n$
				$44_{1} / d 2 / c$
				$4_{3} / d 2_{1} / g_{1}$
				$4_{3} / d 2_{1} / g_{1}$
229	O_{h}^{9}	$\operatorname{Im} \overline{3} m$	$I 4 / m \overline{3} 2 / m$	$I 4 / m \overline{3} 2 / m$
				$42 / n 2_{1} / e$
230	O_{h}^{10}	$I a \overline{3} d$	$I 4_{1} / a \overline{3} 2 / d$	$I 4_{1} / a \overline{3} 2 / d$
				$43 / b \quad 2 / d$

\dagger Axes 3_{1} and 3_{2} parallel to axes 3 are not indicated in the extended symbols: $c f$. Chapter 4.1. For the glide-plane symbol ' e ', see the Foreword to the Fourth Edition (IT 1995) and Section 1.3.2, Note (x).
Note: The glide planes g, g_{1} and g_{2} have the glide components $g\left(\frac{1}{2}, \frac{1}{2}, 0\right), g_{1}\left(\frac{1}{4}, \frac{1}{4}, 0\right)$ and $g_{2}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$.
of two axes does not change the handedness of a coordinate system, so that the settings $\overline{\mathbf{c}} \mathbf{b a}$, cb̄a, cbā and $\overline{\mathbf{c}} \overline{\bar{a}} \overline{\mathrm{a}}$ are equivalent in this respect. The tabulation thus deals with the $6 \times 4=24$ possible right-handed settings. For further details see Section 2.2.6.4.

An important innovation of $I T$ (1952) was the introduction of extended symbols for the centred groups A, B, C, I, F. These
symbols are systematically developed in Table 4.3.2.1. Settings which permute the two axes \mathbf{a} and \mathbf{b} are listed side by side so that the two C settings appear together, followed by the two A and the two B settings.

In crystal classes $m m 2$ and 222, the last symmetry element is the product of the first two and thus is not independent. It was omitted in

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

the short Hermann-Mauguin symbols of $I T(1935)$ for all space groups of class $m m 2$, but was restored in $I T$ (1952). In space groups of class 222, the last symmetry element cannot be omitted (see examples below).

For the new 'double' glide plane symbol ' e ', see the Foreword to the Fourth Edition (IT 1995) and Section 1.3.2, Note (x).

4.3.3.2. Group-subgroup relations

The present section emphasizes the use of the extended and full symbols for the derivation of maximal subgroups of types I and IIa; maximal orthorhombic subgroups of types IIb and IIc cannot be recognized by inspection of the synoptic Table 4.3.2.1.

4.3.3.2.1. Maximal non-isomorphic k subgroups of type IIa (decentred)

(i) Extended symbols of centred groups A, B, C, I

By convention, the second line of the extended space-group symbol is the result of the multiplication of the first line by the centring translation (cf. Table 4.1.2.3). As a consequence, the product of any two terms in one line is equal to the product of the corresponding two terms in the other line.
(a) Class 222

The extended symbol of $I 222$ (23) is $I 222$; the twofold axes

$$
2_{1} 2_{1} 2_{1}
$$

intersect and one obtains $2_{x} \times 2_{y}=2_{z}=2_{1 x} \times 2_{1 y}$.
Maximal k subgroups are $P 222$ and $P 2_{1} 2_{1} 2$ (plus permutations) but not $P 2_{1} 2_{1} 2_{1}$.
The extended symbol of $I 2_{1} 2_{1} 2_{1}(24)$ is $I 2_{1} 2_{1} 2_{1}$, where one 222
obtains $2_{1 x} \times 2_{1 y}=2_{1 z}=2_{x} \times 2_{y}$; the twofold axes do not intersect. Thus, maximal non-isomorphic k subgroups are $P 2_{1} 2_{1} 2_{1}$ and $P 222_{1}$ (plus permutations), but not $P 222$.
(b) Class mm 2

The extended symbol of Aea2 (41) is Aba2; the following cn2 ${ }_{1}$
relations hold: $b \times a=2=c \times n$ and $b \times n=2_{1}=c \times a$. Maximal k subgroups are Pba2; Pcn2 (Pnc2); Pbn21 $\left(P n a 2_{1}\right)$; Pca ${ }_{1}$.
(c) Class mmm

By convention, the first line of the extended symbol contains those symmetry elements for which the coordinate triplets are explicitly printed under Positions. From the two-line symbols, as defined in the example below, one reads not only the eight maximal k subgroups P of class mmm but also the location of their centres of symmetry, by applying the following rules:
If in the symbol of the P subgroup the number of symmetry planes, chosen from the first line of the extended symbol, is odd (three or one), the symmetry centre is at $0,0,0$; if it is even (two or zero), the symmetry centre is at $\frac{1}{4}, \frac{1}{4}, 0$ for the subgroups of C groups and at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ for the subgroups of I groups (Bertaut, 1976).

Examples

(1) According to these rules, the extended symbol of Cmce (64) is Cmcb (see above). The four k subgroups with symmetry centres bna
at 0, 0,0 are Pmcb (Pbam); Pmna; Pbca; Pbnb (Pccn); those with symmetry centres at $\frac{1}{4}, \frac{1}{4}, 0$ are Pbna (Pbcn); Pmca
(Pbcm); Pmnb (Pnma); Pbcb (Pcca). These rules can easily be transposed to other settings.
(2) The extended symbol of Ibam (72) is Ibam. The four subgroups ccn
with symmetry centre at $0,0,0$ are Pbam; Pbcn; Pcan (Pbcn); Pccm;
those with symmetry centre at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ are Pccn; Pcam (Pbcm); Pbcm; Pban.
(ii) Extended symbols of F-centred space groups

Maximal k subgroups of the groups F222, Fmm 2 and $F m m m$ are C, A and B groups. The corresponding centring translations are $w=t\left(\frac{1}{2}, \frac{1}{2}, 0\right), u=t\left(0, \frac{1}{2}, \frac{1}{2}\right)$ and $v=w \times u=t\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

The (four-line) extended symbols of these groups can be obtained from the following scheme:

	$F 222(22)$	Fmm2 (42)	Fmmm (69)
1	222	$m m 2$	mmm
w	$2_{1} 2_{1} 2^{w}$	$b a 2^{w}$	ban
u	$2^{u} 2^{v} 2_{1}$	$n c 2_{1}$	$n c b$
v	$2_{1}^{u} 2^{v} 2_{1}^{w}$	$c n 2_{1}^{w}$	$c n a$

The second, third, and fourth lines are the result of the multiplication of the first line by the centring translations w, u and v, respectively.

The following abbreviations are used:

$$
2_{z}^{w}=w \times 2_{z} ; \quad 2_{1 z}^{w}=w \times 2_{1 z} ; \text { etc. }
$$

For the location of the symmetry elements in the above scheme, see Table 4.1.2.3. In Table 4.3.2.1, the centring translations and the superscripts u, v, w have been omitted. The first two lines of the scheme represent the extended symbols of C222, Сmm 2 and Cmmm. An interchange of the symmetry elements in the first two lines does not change the group. To obtain further maximal C subgroups, one has to replace symmetry elements of the first line by corresponding elements of the third or fourth line. Note that the symbol ' e ' is not used in the four-line symbols for Fmm2 and Fmmm in order to keep the above scheme transparent.

Examples

(1) F222 (22). In the first line replace 2_{x} by 2_{x}^{u} (third line, same column) and keep 2_{y}. Complete the first line by the product $2_{x}^{u} \times 2_{y}=2_{1 z}$ and obtain the maximal C subgroup $C 2^{u} 22_{1}$.

Similarly, in the first line keep 2_{x} and replace 2_{y} with 2_{y}^{v} (fourth line, same column). Complete the first line by the product $2_{x} \times 2_{y}^{v}=2_{1 z}$ and obtain the maximal C subgroup $C 22^{v} 2_{1}$.

Finally, replace 2_{x} and 2_{y} by 2_{x}^{u} and 2_{y}^{v} and form the product $2_{x}^{u} \times 2_{y}^{v}=2_{z}^{w}$, to obtain the maximal C subgroup $C 2^{u} 2^{v} 2^{w}$ (where 2^{w} can be replaced by 2). Note that $C 222$ and $C 2^{u} 2^{v} 2$ are two different subgroups, as are $C 2^{u} 22_{1}$ and $C 22^{\nu} 2_{1}$.
(2) Fmm 2 (42). A similar procedure leads to the four maximal k subgroups Cmm2; Cmc2 ${ }_{1} ; C c m 2_{1}^{w}\left(C m c 2_{1}\right)$; and $C c c 2$.
(3) $F m m m$ (69). One finds successively the eight maximal k subgroups Cmmт; Cmma; Cmст; Ccmm (Cmст); Cmса; Сста (Стса); Ссст; and Ссса.

Maximal A - and B-centred subgroups can be obtained from the C subgroups by simple symmetry arguments.

In space groups $F d d 2$ (43) and $F d d d$ (70), the nature of the d planes is not altered by the translations of the F lattice; for this reason, a two-line symbol for $F d d 2$ and a one-line symbol for $F d d d$ are sufficient. There exist no maximal non-isomorphic k subgroups for these two groups.

4.3. SYMBOLS FOR SPACE GROUPS

4.3.3.2.2. Maximal t subgroups of type I

(i) Orthorhombic subgroups

The standard full symbol of a P group of class mmm indicates all the symmetry elements, so that maximal t subgroups can be read at once.

Example

$P 2_{1} / m 2 / m 2 / a(51)$ has the following four t subgroups: $P 2_{1} 22\left(P 222_{1}\right) ;$ Pmm2; P2 ${ }_{1} m a\left(P m c 2_{1}\right) ; ~ P m 2 a ~(P m a 2)$.
From the standard full symbol of an I group of class $m m m$, the t subgroup of class 222 is read directly. It is either $I 222$ [for Immm (71) and Ibam (72)] or I2 $22_{1} 2_{1}$ [for Ibca (73) and Imma (74)]. Use of the two-line symbols results in three maximal t subgroups of class mm2.
Example
Ibam (72) has the following three maximal t subgroups of ccn
class $m m 2$: Iba2; Ib2 ${ }_{1} m$ (Ima2); I2 ${ }_{1} a m$ (Ima2).
From the standard full symbol of a C group of class $m m m$, one immediately reads the maximal t subgroup of class 222 , which is either $C 222_{1}$ [for Cmcm (63) and Cmce (64)] or C222 (for all other cases). For the three maximal t subgroups of class mm 2 , the two-line symbols are used.

Example

Cmce (64) has the following three maximal t subgroups of bna
class mm2: Cmc_{1}; Cm2e (Aem2); C2ce (Aea2).
Finally, Fmmm (69) has maximal t subgroups $F 222$ and $F m m 2$ (plus permutations), whereas $F d d d$ (70) has $F 222$ and $F d d 2$ (plus permutations).

(ii) Monoclinic subgroups

These subgroups are obtained by substituting the symbol ' 1 ' in two of the three positions. Non-standard centred cells are reduced to primitive cells.

Examples

(1) $C 222_{1}$ (20) has the maximal t subgroups $C 211$ (C2), $C 121$ (C2) and $C 112_{1}$. The last one reduces to $P 112_{1}\left(P 2_{1}\right)$.
(2) Ama2 (40) has the maximal t subgroups Am11, reducible to Pm, $A 1 a 1(C c)$ and $A 112(C 2)$.
(3) Pnma (62) has the standard full symbol $P 2_{1} / n 2_{1} / m 2_{1} / a$, from which the maximal t subgroups $P 2_{1} / n 11\left(P 2_{1} / c\right)$, $P 12_{1} / m 1\left(P 2_{1} / m\right)$ and $P 112_{1} / a\left(P 2_{1} / c\right)$ are obtained.
(4) $F d d d$ (70) has the maximal t subgroups $F 2 / d 11, F 12 / d 1$ and $F 112 / d$, each one reducible to $C 2 / c$.

4.3.4. Tetragonal system

4.3.4.1. Historical note and arrangement of the tables

In the 1935 edition of International Tables, for each tetragonal P and I space group an additional C-cell and F-cell description was given. In the corresponding space-group symbols, secondary and tertiary symmetry elements were simply interchanged. Coordinate triplets for these larger cells were not printed, except for the space groups of class $\overline{4} m 2$. In $I T$ (1952), the C and F cells were dropped from the space-group tables but kept in the comparative tables.

In the present edition, the C and F cells reappear in the sub- and supergroup tabulations of Part 7, as well as in the synoptic Table 4.3.2.1, where short and extended (two-line) symbols are given for P and C cells, as well as for I and F cells.

4.3.4.2. Relations between symmetry elements

In the crystal classes $42(2), 4 m(m), \overline{4} 2(m)$ or $\overline{4} m(2)$, $4 / m 2 / m(2 / m)$, where the tertiary symmetry elements are between parentheses, one finds

$$
4 \times m=(m)=\overline{4} \times 2 ; 4 \times 2=(2)=\overline{4} \times m
$$

Analogous relations hold for the space groups. In order to have the symmetry direction of the tertiary symmetry elements along [110] ($c f$. Table 2.2.4.1), one has to choose the primary and secondary symmetry elements in the product rule along [001] and [010].

Example

In $P 4_{1} 2(2)(91)$, one has $4_{1} \times 2=(2)$ so that $P 4_{1} 2$ would be the short symbol. In fact, in $I T$ (1935), the tertiary symmetry element was suppressed for all groups of class 422, but re-established in IT (1952), the main reason being the generation of the fourfold rotation as the product of the secondary and tertiary symmetry operations: $4=(m) \times m$ etc.

4.3.4.3. Additional symmetry elements

As a result of periodicity, in all space groups of classes 422, $\overline{4} m 2$ and $4 / m 2 / m 2 / m$, the two tertiary diagonal axes 2, along [110] and [110], alternate with axes 2_{1}, the screw component being $\frac{1}{2}, \mp \frac{1}{2}, 0$ (cf. Table 4.1.2.2).
Likewise, tertiary diagonal mirrors m in x, x, z and x, \bar{x}, z in space groups of classes $4 m m, 42 m$ and $4 / m 2 / m 2 / m$ alternate with glide planes called g,* the glide components being $\frac{1}{2}, \pm \frac{1}{2}, 0$. The same glide components produce also an alternation of diagonal glide planes c and n ($c f$. Table 4.1.2.2).

4.3.4.4. Multiple cells

The transformations from the P to the two C cells, or from the I to the two F cells, are

$$
\begin{array}{clll}
C_{1} \text { or } F_{1}:(\text { i }) & \mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b}, & \mathbf{b}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c} \\
C_{2} \text { or } F_{2}:(\text { ii }) & \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c}
\end{array}
$$

(cf. Fig. 5.1.3.5). The secondary and tertiary symmetry directions are interchanged in the double cells. It is important to know how primary, secondary and tertiary symmetry elements change in the new cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

(i) Primary symmetry elements

In P groups, only two kinds of planes, m and n, occur perpendicular to the fourfold axis: a and b planes are forbidden. A plane m in the P cell corresponds to a plane in the C cell which has the character of both a mirror plane m and a glide plane n. This is due to the centring translation $\frac{1}{2}, \frac{1}{2}, 0$ ($c f$. Chapter 4.1). Thus, the C-cell description shows \dagger that $P 4 / m$.. (cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$) has two maximal k subgroups of index [2], $P 4 / m$.. and $P 4 / n$.. (cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$), originating from the decentring of the C cell. The same reasoning is valid for $P 4_{2} / m \ldots$

A glide plane n in the P cell is associated with glide planes a and b in the C cell. Since such planes do not exist in tetragonal P groups, the C cell cannot be decentred, i.e. $P 4 / n$.. and $P 4_{2} / n$.. have no k subgroups of index [2] and cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

Glide planes a perpendicular to conly occur in $I 4_{1} / a$ (88) and groups containing $I 4_{1} / a\left[I 4_{1} /\right.$ amd (141) and $I 4_{1} /$ acd (142)]; they are associated with d planes in the F cell. These groups cannot be decentred, i.e. they have no P subgroups at all.

[^0]
4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

(ii) Secondary symmetry elements

In the tetragonal space-group symbols, one finds two kinds of secondary symmetry elements:
(1) 2, m, c without glide components in the $a b$ plane occur in P and I groups. They transform to tertiary symmetry elements $2, m, c$ in the C or F cells, from which k subgroups can be obtained by decentring.
(2) $2_{1}, b, n$ with glide components $\frac{1}{2}, 0,0 ; 0, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, 0$ in the $a b$ plane occur only in P groups. In the C cell, they become tertiary symmetry elements with glide components $\frac{1}{4},-\frac{1}{4}, 0 ; \frac{1}{4}, \frac{1}{4}, 0$; $\frac{1}{4}, \frac{1}{4}, \frac{1}{2}$. One has the following correspondence between P - and C-cell symbols:

$$
\begin{aligned}
& \text { P. } 2_{1}=C . .2_{1} \\
& \text { P.b. }=C . . g_{1} \text { with } g\left(\frac{1}{4}, \frac{1}{4}, 0\right) \text { in } \quad x, x-\frac{1}{4}, z \\
& \text { P.n. }=C . . g_{2} \text { with } g\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right) \text { in } \quad x, x-\frac{1}{4}, z
\end{aligned}
$$

where $\left(g_{1}\right)^{2}$ and $\left(g_{2}\right)^{2}$ are the centring translations $\frac{1}{2}, \frac{1}{2}, 0$ and $\frac{1}{2}, \frac{1}{2}, 1$. Thus, the C cell cannot be decentred, i.e. tetragonal P groups having secondary symmetry elements $2_{1}, b$ or n cannot have klassengleiche P subgroups of index [2] and cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

(iii) Tertiary symmetry elements

Tertiary symmetry elements $2, m, c$ in P groups transform to secondary symmetry elements in the C cell, from which k subgroups can easily be deduced (\rightarrow) :

$$
\begin{aligned}
& \begin{array}{c}
\text { P. } . m=C . m . \\
g
\end{array} \quad \text { P.m. } \\
& P . . c=C . c . \longrightarrow P . c . \\
& n \quad n \quad P . n \text {. } \\
& P . .2=C .2 . \longrightarrow P .2 \text {. }
\end{aligned}
$$

Decentring leads in each case to two P subgroups (cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$), when allowed by (i) and (ii).

In I groups, $2, m$ and d occur as tertiary symmetry elements. They are transformed to secondary symmetry elements in the F cells. I groups with tertiary d glides cannot be decentred to P groups, whereas I groups with diagonal symmetry elements 2 and m have maximal P subgroups, due to decentring.

4.3.4.5. Group-subgroup relations

Examples are given for maximal k subgroups of P groups (i), of I groups (ii), and for maximal tetragonal, orthorhombic and monoclinic t subgroups.

4.3.4.5.1. Maximal k subgroups

(i) Subgroups of P groups

The discussion is limited to maximal P subgroups, obtained by decentring the larger C cell ($c f$. Section 4.3.4.4 Multiple cells).

Classes $\overline{4}, 4$ and 422

Examples

(1) Space groups $P \overline{4}$ (81) and $P 4_{p}(p=0,1,2,3)$ (75-78) have isomorphic k subgroups of index [2], cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.
(2) Space groups $P 4_{p} 22(p=0,1,2,3)(89,91,93,95)$ have the extended C-cell symbol $C 4_{p} 22$, from which one deduces two 21
k subgroups, $P 4_{p} 22$ (isomorphic, type IIc) and $P 4_{p} 2_{1} 2$ (nonisomorphic, type IIb), cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.
(3) Space groups $P 4_{p} 2_{1} 2(90,92,94,96)$ have no k subgroups of index [2], cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

Classes $\overline{4} m 2,4 m m, 4 / m$, and $4 / \mathrm{mmm}$

Examples

(1) $P \overline{4} c 2$ (116) has the C-cell symbol $C \overline{4} 2 c$, wherefrom one 2_{1}
deduces two k subgroups, $P \overline{4} 2 c$ and $P \overline{4} 2_{1} c$, cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.
(2) $P 4_{2} m c$ (105) has the C-cell symbol $C 4_{2} c m$, from which the k n
subgroups $P 4_{2} \mathrm{Cm}$ (101) and $P 4_{2} n m$ (102), cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$, are obtained.
(3) $P 4_{2} / m c m$ (132) has the extended C symbol $C 4_{2} / m m c$, where$n b$
from one reads the following k subgroups of index [2], cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}: P 4_{2} / m m c, P 4_{2} / m b c, P 4_{2} / n m c, P 4_{2} / n b c$.
(4) $P 4 / n b m(125)$ has the extended C symbol $C 4 / a m g_{1}$ and has no bb
k subgroups of index [2], as explained above in Section 4.3.4.4.
(ii) Subgroups of I groups

Note that I groups with a glides perpendicular to [001] or with diagonal d planes cannot be decentred ($c f$. above). The discussion is limited to P subgroups of index [2], obtained by decentring the I cell. These subgroups are easily read from the two-line symbols of the I groups in Table 4.3.2.1.

Examples
(1) $I 4 \mathrm{~cm}$ (108) has the extended symbol $I 4 \mathrm{ce}$. The multiplication $4_{2} b m$
rules $4 \times b=m=4_{2} \times c$ give rise to the maximal k subgroups: $P 4 c c, P 4_{2} b c, P 4 b m, P 4_{2} c m$.

Similarly, $I 4 m m$ (107) has the P subgroups $P 4 m m, P 4_{2} n m$, $P 4 n c, P 4_{2} m c$, i.e. $I 4 m m$ and $I 4 c m$ have all P groups of class $4 m m$ as maximal k subgroups.
(2) $I 4 / \mathrm{mcm}$ (140) has the extended symbol $I 4 / \mathrm{m} \mathrm{ce}$. One obtains $4_{2} / n b m$
the subgroups of example (1) with an additional m or n plane perpendicular to \mathbf{c}.

As in example (1), $I 4 / \mathrm{mcm}$ (140) and $I 4 / \mathrm{mmm}$ (139) have all P groups of class $4 / \mathrm{mmm}$ as maximal k subgroups.

4.3.4.5.2. Maximal t subgroups

(i) Tetragonal subgroups

The class $4 / \mathrm{mmm}$ contains the classes $4 / \mathrm{m}, 422,4 \mathrm{~mm}$ and $\overline{4} 2 \mathrm{~m}$. Maximal t subgroups belonging to these classes are read directly from the standard full symbol.

Examples

(1) $P 4_{2} / m b c$ (135) has the full symbol $P 4_{2} / m 2_{1} / b 2 / c$ and the tetragonal maximal t subgroups: $P 4_{2} / m, P 4_{2} 2_{1} 2, P 4_{2} b c, P \overline{4} 2_{1} c$, $P \overline{4} b 2$.
(2) $I 4 / \mathrm{m} \mathrm{cm}(140)$ has the extended full symbol $I 4 / m 2 / c 2 / e$ and the tetragonal maximal t subgroups $4_{2} / n 2_{1} / b 2_{1} / m$
$I 4 / m, I 422, I 4 c m, I \overline{4} 2 m, I \overline{4} c 2$. Note that the t subgroups of class $\overline{4} m 2$ always exist in pairs.

(ii) Orthorhombic subgroups

In the orthorhombic subgroups, the symmetry elements belonging to directions [100] and [010] are the same, except that a glide plane b perpendicular to [100] is accompanied by a glide plane a perpendicular to [010].

4.3. SYMBOLS FOR SPACE GROUPS

Examples
(1) $P 4_{2} / m b c$ (135). From the full symbol, the first maximal t subgroup is found to be $P 2_{1} / b 2_{1} / a 2 / m$ (Pbam). The C-cell symbol is $C 4_{2} / m c g_{1}$ and gives rise to the second maximal orthorhombic t subgroup $C c c m$, cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.
(2) $I 4 / \mathrm{m} \mathrm{cm}$ (140). Similarly, the first orthorhombic maximal t subgroup is Iccm (Ibam); the second maximal orthorhombic t ban
subgroup is obtained from the F-cell symbol as Fc cm
(Fmmm), cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.
These examples show that P - and C-cell, as well as I - and F-cell descriptions of tetragonal groups have to be considered together.

(iii) Monoclinic subgroups

Only space groups of classes $4, \overline{4}$ and $4 / m$ have maximal monoclinic t subgroups.

Examples

(1) $P 4_{1}(76)$ has the subgroup $P 112_{1}\left(P 2_{1}\right)$. The C-cell description does not add new features: $C 112_{1}$ is reducible to $P 2_{1}$.
(2) $I 4_{1} / a(88)$ has the subgroup $I 112_{1} / a$, equivalent to $I 112 / a(C 2 / c)$. The F-cell description yields the same subgroup $F 112 / d$, again reducible to $C 2 / c$.

4.3.5. Trigonal and hexagonal systems

The trigonal and hexagonal crystal systems are considered together, because they form the hexagonal 'crystal family', as explained in Chapter 2.1. Hexagonal lattices occur in both systems, whereas rhombohedral lattices occur only in the trigonal system.

4.3.5.1. Historical note

The 1935 edition of International Tables contains the symbols C and H for the hexagonal lattice and R for the rhombohedral lattice. C recalls that the hexagonal lattice can be described by a double rectangular C-centred cell (orthohexagonal axes); H was used for a hexagonal triple cell (see below); R designates the rhombohedral lattice and is used for both the rhombohedral description (primitive cell) and the hexagonal description (triple cell).

In the 1952 edition the following changes took place ($c f$. pages x , 51 and 544 of $I T$ 1952): The lattice symbol C was replaced by P for reasons of consistency; the H description was dropped. The symbol R was kept for both descriptions, rhombohedral and hexagonal. The tertiary symmetry element in the short Hermann-Mauguin symbols of class 622, which was omitted in $I T$ (1935), was re-established.

In the present volume, the use of P and R is the same as in $I T(1952)$. The H cell, however, reappears in the sub- and supergroup data of Part 7 and in Table 4.3.2.1 of this section, where short symbols for the H description of trigonal and hexagonal space groups are given. The C cell reappears in the subgroup data for all trigonal and hexagonal space groups having symmetry elements orthogonal to the main axis.

4.3.5.2. Primitive cells

The primitive cells of the hexagonal and the rhombohedral lattice, $h P$ and $h R$, are defined in Table 2.1.2.1 In Part 7, the 'rhombohedral' description of the $h R$ lattice is designated by 'rhombohedral axes'; cf. Chapter 1.2.

4.3.5.3. Multiple cells

Multiple cells are frequently used to describe both the hexagonal and the rhombohedral lattice.
(i) The triple hexagonal R cell; cf. Chapters 1.2 and 2.1

When the lattice is rhombohedral $h R$ (primitive cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$), the triple R cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ corresponds to the 'hexagonal description' of the rhombohedral lattice. There are three right-handed obverse R cells:

$$
\begin{array}{lll}
R_{1}: & \mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b} ; & \mathbf{b}^{\prime}=\mathbf{b}-\mathbf{c} ; \\
R_{2}: & \mathbf{c}^{\prime}=\mathbf{a}+\mathbf{b}+\mathbf{c} ; \\
\mathbf{a}_{3}=\mathbf{b}-\mathbf{c} ; & \mathbf{a}^{\prime}=\mathbf{c}-\mathbf{a} ; & \mathbf{b}^{\prime}=\mathbf{c}-\mathbf{a} ; \\
\mathbf{b}^{\prime}=\mathbf{a}-\mathbf{b} ; & \mathbf{c}^{\prime}=\mathbf{a}+\mathbf{b}+\mathbf{c} ; \\
\mathbf{c}^{\prime}=\mathbf{a}+\mathbf{b}+\mathbf{c} .
\end{array}
$$

Three further right-handed R cells are obtained by changing \mathbf{a}^{\prime} and \mathbf{b}^{\prime} to $-\mathbf{a}^{\prime}$ and $-\mathbf{b}^{\prime}$, i.e. by a 180° rotation around \mathbf{c}^{\prime}. These cells are reverse. The transformations between the triple R cells and the primitive rhombohedral cell are given in Table 5.1.3.1 and Fig. 5.1.3.6.

The obverse triple R cell has 'centring points' at

$$
0,0,0 ; \quad \frac{2}{3}, \frac{1}{3}, \frac{1}{3} ; \quad \frac{1}{3}, \frac{2}{3}, \frac{2}{3}
$$

whereas the reverse R cell has 'centring points' at

$$
0,0,0 ; \quad \frac{1}{3}, \frac{2}{3}, \frac{1}{3} ; \quad \frac{2}{3}, \frac{1}{3}, \frac{2}{3} .
$$

In the space-group tables of Part 7, the obverse R_{1} cell is used, as illustrated in Fig. 2.2.6.9. This 'hexagonal description' is designated by 'hexagonal axes'.

(ii) The triple rhombohedral D cell

Parallel to the 'hexagonal description of the rhombohedral lattice' there exists a 'rhombohedral description of the hexagonal lattice'. Six right-handed rhombohedral cells (here denoted by D) with cell vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ of equal lengths are obtained from the hexagonal P cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$ by the following transformations and by cyclic permutations of $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$:

$$
\begin{array}{lll}
D_{1}: & \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{c} ; & \mathbf{b}^{\prime}=\mathbf{b}+\mathbf{c} ; \\
D_{2}: & \mathbf{c}^{\prime}=-(\mathbf{a}+\mathbf{b})+\mathbf{c} \\
\mathbf{a}^{\prime}=-\mathbf{a}+\mathbf{c} ; & \mathbf{b}^{\prime}=-\mathbf{b}+\mathbf{c} ; & \mathbf{c}^{\prime}=\mathbf{a}+\mathbf{b}+\mathbf{c} .
\end{array}
$$

The transformation matrices are listed in Table 5.1.3.1. D_{2} follows from D_{1} by a 180° rotation around [111]. The D cells are triple rhombohedral cells with 'centring' points at

$$
0,0,0 ; \frac{1}{3}, \frac{1}{3}, \frac{1}{3} ; \frac{2}{3}, \frac{2}{3}, \frac{2}{3} .
$$

The D cell, not used in practice and not considered explicitly in the present volume, is useful for a deeper understanding of the relations between hexagonal and rhombohedral lattices.

(iii) The triple hexagonal H cell; cf. Chapter 1.2

Generally, a hexagonal lattice $h P$ is described by means of the smallest hexagonal P cell. An alternative description employs a larger hexagonal H-centred cell of three times the volume of the P cell; this cell was extensively used in IT (1935), see Historical note above.

There are three right-handed orientations of the H cell (basis vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$) with respect to the basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ of the P cell:

$$
\begin{array}{llll}
H_{1}: & \mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b} ; & \mathbf{b}^{\prime}=\mathbf{a}+2 \mathbf{b} ; & \mathbf{c}^{\prime}=\mathbf{c} \\
H_{2}: & \mathbf{a}^{\prime}=2 \mathbf{a}+\mathbf{b} ; & \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b} ; & \mathbf{c}^{\prime}=\mathbf{c} \\
H_{3}: & \mathbf{a}^{\prime}=\mathbf{a}+2 \mathbf{b} ; & \mathbf{b}^{\prime}=-2 \mathbf{a}-\mathbf{b} ; & \mathbf{c}^{\prime}=\mathbf{c} .
\end{array}
$$

The transformations are given in Table 5.1.3.1 and Fig. 5.1.3.8. The new vectors \mathbf{a}^{\prime} and \mathbf{b}^{\prime} are rotated in the $a b$ plane by $-30^{\circ}\left(H_{1}\right)$, $+30^{\circ}\left(H_{2}\right),+90^{\circ}\left(H_{3}\right)$ with respect to the old vectors \mathbf{a} and \mathbf{b}. Three further right-handed H cells are obtained by changing \mathbf{a}^{\prime} and \mathbf{b}^{\prime} to $-\mathbf{a}^{\prime}$ and $-\mathbf{b}^{\prime}$, i.e. by a rotation of 180° around \mathbf{c}^{\prime}.

The H cell has 'centring' points at

$$
0,0,0 ; \quad \frac{2}{3}, \frac{1}{3}, 0 ; \quad \frac{1}{3}, \frac{2}{3}, 0 .
$$

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

Secondary and tertiary symmetry elements of the P cell are interchanged in the H cell, and the general position in the H cell is easily obtained, as illustrated by the following example.

Example

The space-group symbol $P 3 m 1$ in the P cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$ becomes $H 31 m$ in the H cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$. To obtain the general position of $H 31 m$, consider the coordinate triplets of $P 31 m$ and add the centring translations $0,0,0 ; \frac{2}{3}, \frac{1}{3}, 0 ; \frac{1}{3}, \frac{2}{3}, 0$.

(iv) The double orthohexagonal C cell

The C-centred cell which is defined by the so-called 'orthohexagonal' vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ has twice the volume of the P cell. There are six right-handed orientations of the C cell, which are C_{1}, C_{2} and C_{3} plus three further ones obtained by changing \mathbf{a}^{\prime} and \mathbf{b}^{\prime} to $-\mathbf{a}^{\prime}$ and $-\mathbf{b}^{\prime}$:

$$
\begin{aligned}
& C_{1}: \mathbf{a}^{\prime}=\mathbf{a} \quad ; \quad \mathbf{b}^{\prime}=\mathbf{a}+2 \mathbf{b} ; \quad \mathbf{c}^{\prime}=\mathbf{c} \\
& C_{2}: \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{b} ; \quad \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b} ; \quad \mathbf{c}^{\prime}=\mathbf{c} \\
& C_{3}: \mathbf{a}^{\prime}=\mathbf{b} ; \quad \mathbf{b}^{\prime}=-2 \mathbf{a}-\mathbf{b} ; \quad \mathbf{c}^{\prime}=\mathbf{c} .
\end{aligned}
$$

Transformation matrices are given in Table 5.1.3.1 and illustrations in Fig. 5.1.3.7. Here \mathbf{b}^{\prime} is the long axis.

4.3.5.4. Relations between symmetry elements

In the hexagonal crystal classes $62(2), 6 m(m)$ and $\overline{6} 2(m)$ or $\overline{6} m(2)$, where the tertiary symmetry element is between parentheses, the following products hold:

$$
6 \times 2=(2)=\overline{6} \times m ; \quad 6 \times m=(m)=\overline{6} \times 2
$$

or

$$
6 \times 2 \times(2)=6 \times m \times(m)=\overline{6} \times 2 \times(m)=\overline{6} \times m \times(2)=1 .
$$

The same relations hold for the corresponding Hermann-Mauguin space-group symbols.

4.3.5.5. Additional symmetry elements

Parallel axes 2 and 2_{1} occur perpendicular to the principal symmetry axis. Examples are space groups R32 (155), P321 (150) and P312 (149), where the screw components are $\frac{1}{2}, \frac{1}{2}, 0$ (rhombohedral axes) or $\frac{1}{2}, 0,0$ (hexagonal axes) for $R 32 ; \frac{1}{2}, 0,0$ for $P 321$; and $\frac{1}{2}, 1,0$ for $P 312$. Hexagonal examples are $P 622$ (177) and $P \overline{6} 2 c(190)$.

Likewise, mirror planes m parallel to the main symmetry axis alternate with glide planes, the glide components being perpendicular to the principal axis. Examples are P3m1 (156), P31m (157), $R 3 m$ (160) and P6mm (183).

Glide planes c parallel to the main axis are interleaved by glide planes n. Examples are $P 3 c 1$ (158), $P 31 c$ (159), $R 3 c$ (161, hexagonal axes), $P \overline{6} c 2$ (188). In $R 3 c$ and $R \overline{3} c$, the glide component $0,0, \frac{1}{2}$ for hexagonal axes becomes $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ for rhombohedral axes, i.e. the c glide changes to an n glide. Thus, if the space group is referred to rhombohedral axes, diagonal n planes alternate with diagonal a, b or c planes ($c f$. Section 1.4.4).

In R space groups, all additional symmetry elements with glide and screw components have their origin in the action of an integral lattice translation. This is also true for the axes 3_{1} and 3_{2} which appear in all R space groups ($c f$. Table 4.1.2.2). For this reason, the 'rhombohedral centring' R is not included in Table 4.1.2.3, which contains only the centrings A, B, C, I, F.

4.3.5.6. Group-subgroup relations

4.3.5.6.1. Maximal k subgroups

Maximal k subgroups of index [3] are obtained by 'decentring' the triple cells R (hexagonal description), D and H in the trigonal
system, H in the hexagonal system. Any one of the three centring points may be taken as origin of the subgroup.
(i) Trigonal system

Examples

(1) $\operatorname{P3m} 1$ (156) (cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$) is equivalent to $H 31 m\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}\right)$. Decentring of the H cell yields maximal non-isomorphic k subgroups of type $P 31 m$. Similarly, $P 31 m$ (157) has maximal subgroups of type $P 3 \mathrm{ml}$; thus, one can construct infinite chains of subgroup relations of index [3], tripling the cell at each step:

$$
P 3 m 1 \rightarrow P 31 m \rightarrow P 3 m 1 \ldots
$$

(2) $R 3$ (146), by decentring the triple hexagonal R cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$, yields the subgroups $P 3, P 3_{1}$ and $P 3_{2}$ of index [3].
(3) Likewise, decentring of the triple rhombohedral cells D_{1} and D_{2} gives rise, for each cell, to the rhombohedral subgroups of a trigonal P group, again of index [3].

Combining (2) and (3), one may construct infinite chains of subgroup relations, tripling the cell at each step:

$$
P 3 \rightarrow R 3 \rightarrow P 3 \rightarrow R 3 \ldots
$$

These chains illustrate best the connections between rhombohedral and hexagonal lattices.
(4) Special care must be applied when secondary or tertiary symmetry elements are present. Combining (1), (2) and (3), one has for instance:

$$
P 31 c \rightarrow R 3 c \rightarrow P 3 c 1 \rightarrow P 31 c \rightarrow R 3 c \ldots
$$

(5) Rhombohedral subgroups, found by decentring the triple cells D_{1} and D_{2}, are given under block IIb and are referred there to hexagonal axes, $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}$ as listed below. Examples are space groups $P 3$ (143) and $P \overline{3} 1 c$ (163)

$$
\begin{array}{ll}
\mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b}, & \mathbf{b}^{\prime}=\mathbf{a}+2 \mathbf{b}, \quad \\
\mathbf{a}^{\prime}=2 \mathbf{a}+\mathbf{b}, \\
\mathbf{a}^{\prime}, & \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b},
\end{array} \quad \mathbf{c}^{\prime}=3 \mathbf{c} .
$$

(ii) Hexagonal system

Examples
(1) P62c (190) is described as $H \overline{6} c 2$ in the triple cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$; decentring yields the non-isomorphic subgroup $P \overline{6} c 2$.
(2) $P 6 / m c c$ (192) (cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$) keeps the same symbol in the H cell and, consequently, gives rise to the maximal isomorphic subgroup $P 6 / m c c$ with cell $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$. An analogous result applies whenever secondary and tertiary symmetry elements in the Hermann-Mauguin symbol are the same and also to space groups of classes $6, \overline{6}$ and $6 / m$.

4.3.5.6.2. Maximal t subgroups

Maximal t subgroups of index [2] are read directly from the full symbol of the space groups of classes $32,3 m, \overline{3} m, 622,6 \mathrm{~mm}, \overline{6} 2 \mathrm{~m}$, 6/mmm.

Maximal t subgroups of index [3] follow from the third power of the main-axis operation. Here the C-cell description is valuable.
(i) Trigonal system
(a) Trigonal subgroups

Examples
(1) $R 32 / c$ (167) has $R 3 c, R 32$ and $R \overline{3}$ as maximal t subgroups of index [2].
(2) $P \overline{3} c 1$ (165) has $P 3 c 1, P 321$ and $P \overline{3}$ as maximal t subgroups of index [2].

4.3. SYMBOLS FOR SPACE GROUPS

(b) Orthorhombic subgroups

No orthorhombic subgroups of trigonal space groups exist, in spite of the existence of an orthohexagonal C cell.

(c) Monoclinic subgroups

All trigonal space groups with secondary or tertiary symmetry elements have monoclinic C-centred maximal t subgroups of index [3].

Example

$P \overline{3} 1 c(163), P \overline{3} c 1$ (165) and $R \overline{3} c(167)$ have subgroups of type $C 2 / c$.

(d) Triclinic subgroups

All trigonal space groups without secondary or tertiary symmetry elements have triclinic maximal t subgroups of index [3].

Example
$P \overline{3}(147)$ and $R \overline{3}$ (148) have subgroups $P \overline{1}$.
(ii) Hexagonal system
(a) Hexagonal subgroups

Example

$P 6_{3} / m 2 / c 2 / m$ (193) has maximal t subgroups $P 6_{3} / m, P 6_{3} 22$, $P 6_{3} c m, P \overline{6} 2 m$ and $P \overline{6} c 2$ of index [2].

(b) Trigonal subgroups

The second and fourth powers of sixfold operations are threefold operations; thus, all hexagonal space groups have maximal trigonal t subgroups of index [2]. In space groups of classes $622,6 \mathrm{~mm}, 62 \mathrm{~m}$, $6 / \mathrm{mmm}$ with secondary and tertiary symmetry elements, trigonal t subgroups always occur in pairs.

Examples

(1) $P 6_{1}$ (169) contains $P 3_{1}$ of index [2].
(2) $P \overline{6} 2 c$ (190) has maximal t subgroups $P 321$ and $P 31 c ; P 6_{1} 22$ (178) has subgroups $P 3_{1} 21$ and $P 3_{1} 12$, all of index [2].
(3) $P 6_{3} / \mathrm{mcm}(193)$ contains the operation $\overline{3}\left[=\left(6_{3}\right)^{2} \times \overline{1}\right]$ and thus has maximal t subgroups $P \overline{3} c 1$ and $P \overline{3} 1 m$ of index [2].

(c) Orthorhombic and monoclinic subgroups

The third power of the sixfold operation is a twofold operation: accordingly, maximal orthorhombic t subgroups of index [3] are derived from the C-cell description of space groups of classes 622 , $6 \mathrm{~mm}, 62 \mathrm{~m}$ and $6 / \mathrm{mmm}$. Monoclinic P subgroups of index [3] occur in crystal classes $6, \overline{6}$ and $6 / m$.

Examples

(1) $P \overline{6} 2 c$ (190) becomes $C \overline{6} 2 c$ in the C cell; with $(\overline{6})^{3}=m$, one obtains $C 2 \mathrm{~cm}$ (sequence $\mathbf{a}, \mathbf{b}, \mathbf{c}$) as a maximal t subgroup of index [3]. The standard symbol is Ama2.
(2) $P 6_{3} / \mathrm{mcm}$ (193) has maximal orthorhombic t subgroups of type Cmcm of index [3]. With the examples under (a) and (b), this exhausts all maximal t subgroups of $P 6_{3} / \mathrm{mcm}$.
(3) $P 6_{1}$ (169) has a maximal t subgroup $P 2_{1} ; P 6_{3} / m$ (176) has $P 2_{1} / m$ as a maximal t subgroup.

4.3.6. Cubic system

4.3.6.1. Historical note and arrangement of tables

In the synoptic tables of $I T$ (1935) and $I T$ (1952), for cubic space groups short and full Hermann-Mauguin symbols were listed. They agree, except that in $I T(1935)$ the tertiary symmetry element of the
space groups of class 432 was omitted; it was re-established in IT (1952).

In the present edition, the symbols of $I T$ (1952) are retained, with one exception. In the space groups of crystal classes $m \overline{3}$ and $m \overline{3} m$, the short symbols contain $\overline{3}$ instead of 3 (cf. Section 2.2.4). In Table 4.3.2.1, short and full symbols for all cubic space groups are given. In addition, for centred groups F and I and for P groups with tertiary symmetry elements, extended space-group symbols are listed. In space groups of classes 432 and $\overline{4} 3 m$, the product rule (as defined below) is applied in the first line of the extended symbol.

4.3.6.2. Relations between symmetry elements

Conventionally, the representative directions of the primary, secondary and tertiary symmetry elements are chosen as [001], [111], and [110] ($c f$. Table 2.2.4.1 for the equivalent directions). As in tetragonal and hexagonal space groups, tertiary symmetry elements are not independent. In classes $432, \overline{4} 3 m$ and $m \overline{3} m$, there are product rules

$$
4 \times 3=(2) ; \quad \overline{4} \times 3=(m)=4 \times \overline{3},
$$

where the tertiary symmetry element is in parentheses; analogous rules hold for the space groups belonging to these classes. When the symmetry directions of the primary and secondary symmetry elements are chosen along [001] and [111], respectively, the tertiary symmetry direction is [011], according to the product rule. In order to have the tertiary symmetry direction along [110], one has to choose the somewhat awkward primary and secondary symmetry directions [010] and [111].

Examples

(1) In $P \overline{4} 3 n$ (218), with the choice of the 3 axis along [$\overline{1} 1 \overline{1}]$ and of the $\overline{4}$ axis parallel to [010], one finds $\overline{4} \times 3=n$, the n glide plane being in x, x, z, as shown in the space-group diagram.
(2) In $F \overline{4} 3 c$ (219), one has the same product rule as above; the centring translation $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, however, associates with the n glide plane a c glide plane, also located in x, x, z ($c f$. Table 4.1.2.3). In the space-group diagram and symbol, c was preferred to n.

4.3.6.3. Additional symmetry elements

Owing to periodicity, the tertiary symmetry elements alternate; diagonal axes 2 alternate with parallel screw axes 2_{1}; diagonal planes m alternate with parallel glide planes g; diagonal n planes, i.e. planes with glide components $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, alternate with glide planes a, b or c (cf. Chapter 4.1 and Tables 4.1.2.2 and 4.1.2.3). For the meaning of the various glide planes g, see Section 11.1.2 and the entries Symmetry operations in Part 7.

4.3.6.4. Group-subgroup relations

4.3.6.4.1. Maximal k subgroups

The extended symbol of $F m \overline{3}$ (202) shows clearly that $P m \overline{3}$, $P n \overline{3}, P b \overline{3}(P a \overline{3})$ and $P a \overline{3}$ are maximal subgroups. $P m \overline{3} m, P n \overline{3} n$, $P m \overline{3} n$ and $P n \overline{3} m$ are maximal subgroups of $\operatorname{Im} \overline{3} m$ (229). Space groups with d glide planes have no k subgroup of lattice P.

4.3.6.4.2. Maximal t subgroups

(a) Cubic subgroups

The cubic space groups of classes $m \overline{3}, 432$ and $\overline{4} 3 m$ have maximal cubic subgroups of class 23 which are found by simple inspection of the full symbol.

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

Examples

$I a \overline{3}$ (206), full symbol $I 2_{1} / a \overline{3}$, contains $I 2_{1} 3 . P 2_{1} 3$ is a maximal subgroup of $P 4_{1} 32$ (213) and its enantiomorph $P 4_{3} 32$ (212). A more difficult example is $I \overline{4} 3 d$ (220) which contains $I 2{ }_{1} 3$.*

The cubic space groups of class $m \overline{3} m$ have maximal subgroups which belong to classes 432 and $\overline{4} 3 m$.

Examples

$F 4 / m \overline{3} 2 / c$ (226) contains $F 432$ and $F \overline{4} 3 c ; I 4_{1} / a \overline{3} 2 / d$ (230) contains $I 4_{1} 32$ and I43d.
(b) Tetragonal subgroups

In the cubic space groups of classes 432 and $\overline{4} 3 m$, the primary and tertiary symmetry elements are relevant for deriving maximal tetragonal subgroups.

Examples

The groups $P 432$ (207), $P 4_{2} 32$ (208), $P 4_{3} 32$ (212) and $P 4_{1} 32$ (213) have maximal tetragonal t subgroups of index [3]: P422, $P 4_{2} 22, P 4_{3} 2_{1} 2$ and $P 4_{1} 2_{1}$. I 432 (211) gives rise to $I 422$ with the same cell. $F 432$ (209) also gives rise to $I 422$, but via $F 422$, so that the final unit cell is $a \sqrt{2} / 2, a \sqrt{2} / 2, a$.
In complete analogy, the groups $P \overline{4} 3 m$ (215) and $P \overline{4} 3 n$ (218) have maximal subgroups $P \overline{4} 2 m$ and $P \overline{4} 2 c$. \dagger

For the space groups of class $m \overline{3} m$, the full symbols are needed to recognize their tetragonal maximal subgroups of class $4 / \mathrm{mmm}$. The primary symmetry planes of the cubic space group are conserved in the primary and secondary symmetry elements of the tetragonal
subgroup: m, n and d remain in the tetragonal symbol; a remains a in the primary and becomes c in the secondary symmetry element of the tetragonal symbol.

Example

$P 4_{2} / n \overline{3} 2 / m$ (224) and $I 4_{1} / a \overline{3} 2 / d$ (230) have maximal subgroups $P 4_{2} / n 2 / n 2 / m$ and $I 4_{1} / a 2 / c 2 / d$, respectively, $F 4_{1} / d 32 / c$ (228) gives rise to $F 4_{1} / d 2 / d 2 / c$, which is equivalent to $I 4_{1} / a 2 / c 2 / d$, all of index [3].
(c) Rhombohedral subgroups \ddagger

Here the secondary and tertiary symmetry elements of the cubic space-group symbols are relevant. For space groups of classes 23 , $m \overline{3}, 432$, the maximal R subgroups are $R 3, R \overline{3}$ and $R 32$, respectively. For space groups of class $43 m$, the maximal R subgroup is $R 3 m$ when the tertiary symmetry element is m and $R 3 c$ otherwise. Finally, for space groups of class $m \overline{3} m$, the maximal R subgroup is $R \overline{3} m$ when the tertiary symmetry element is m and $R \overline{3} c$ otherwise. All subgroups are of index [4].

(d) Orthorhombic subgroups

Maximal orthorhombic space groups of index [3] are easily derived from the cubic space-group symbols of classes 23 and $m \overline{3} . \ddagger$ Thus, $P 23, F 23, I 23, P 2_{1} 3, I 2_{1} 3(195-199)$ have maximal subgroups $P 222, F 222, I 222, P 2_{1} 2_{1} 2_{1}, I 2_{1} 2_{1} 2_{1}$, respectively. Likewise, maximal subgroups of $\operatorname{Pm} \overline{3}, \operatorname{Pr} \overline{3}, F m \overline{3}, F d \overline{3}, \operatorname{Im} \overline{3}, \operatorname{Pa} \overline{3}$, Ia3 (200-206) are Pmmm, Pnnn, Fmmm, Fddd, Immm, Pbca, Ibca, respectively. The lattice type (P, F, I) is conserved and only the primary symmetry element has to be considered.

[^1]
References

4.1

Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). 1. Band, edited by C. Hermann. Berlin: Borntraeger. [Revised edition: Ann Arbor: Edwards (1944). Abbreviated as IT (1935).]

International Tables for X-ray Crystallography (1952). Vol. I, edited by N. F. M. Henry \& K. Lonsdale. Birmingham: Kynoch Press. [Abbreviated as IT (1952).]

4.2

International Tables for X-ray Crystallography (1952). Vol. I, edited by N. F. M. Henry \& K. Lonsdale. Birmingham: Kynoch Press. [Abbreviated as $I T$ (1952).]
\ddagger They have already been given in $I T$ (1935).

[^0]: * For other g planes see (ii), Secondary symmetry elements.
 \dagger In this section, a dot stands for a symmetry element to be inserted in the corresponding position of the space-group symbol.

[^1]: * From the product rule it follows that $\overline{4}$ and d have the same translation component so that $(\overline{4})^{2}=2_{1}$.
 \dagger The tertiary cubic symmetry element n becomes c in tetragonal notation.

