International Tables for Crystallography (2006). Vol. A, Section 4.3.3, pp. 68-71.

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)

TRIGONAL SYSTEM

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols for standard cell P or R			Triple cell H
		Short	Full	Extended	
143	C_{3}^{1}	P3			H3
144	C_{3}^{2}	$P 3_{1}$			H3 ${ }_{1}$
145	C_{3}^{3}	$P 3_{2}$			H_{2}
146	C_{3}^{4}	R3		R3	
				$3_{1,2}$	
147	$C_{3 i}^{1}$	$P \overline{3}$			$H \overline{3}$
148	$C_{3 i}^{2}$	$R \overline{3}$		$R \overline{3}$	
				$3_{1,2}$	
149	D_{3}^{1}	P312		P312	H321
				21	
150	D_{3}^{2}	P321		P321	H312
				$2{ }_{1}$	
151	D_{3}^{3}	$P 3{ }_{1} 12$		$P 3_{1} 12$	H3 ${ }_{1} 21$
				21	
152	D_{3}^{4}	$P 3{ }_{1} 21$		$P 3121$	$H 3_{1} 12$
				21	
153	D_{3}^{5}	$P 3{ }_{2} 12$		$P 3_{2} 12$	$H 3221$
				21	
154	D_{3}^{6}	$P 3_{2} 21$		$P 3_{2} 21$	$\mathrm{H}_{2} 12$
				21	
155	D_{3}^{7}	R32		R3 2	
				$3_{1,2} 2_{1}$	
156	$C_{3 v}^{1}$	P3m1		P3m1	H31m
				b	
157	$C_{3 v}^{2}$	P31m		P31m	H3m1
				a	
158	$C_{3 v}^{3}$	P3c1		$P 3 \mathrm{c} 1$	H31c
				n	
159	$C_{3 v}^{4}$	P31c		P31c	$H 3 \mathrm{c} 1$
				n	
160	$C_{3 v}^{5}$	R3m		R3 m	
				$3_{1,2} b$	
161	$C_{3 v}^{6}$	$R 3 \mathrm{c}$		R3 c	
				$3_{1,2} n$	
162	$D_{3 d}^{1}$	$P \overline{3} 1 m$	$P \overline{3} 12 / m$	$P \overline{3} 12 / m$	$H \overline{3} m 1$
				- $21 / a$	
163	$D_{3 d}^{2}$	$P \overline{3} 1 c$	$P \overline{3} 12 / c$	$P \overline{3} 12 / c$	$H \overline{3} c 1$
				21/n	
164	$D_{3 d}^{3}$	$P \overline{3} m 1$	$P \overline{3} 2 / m 1$	$P \overline{3} 2 / m 1$	$H \overline{3} 1 m$
				2 $2 / b$	
165	$D_{3 d}^{4}$	$P \overline{3} c 1$	$P \overline{3} 2 / c 1$	$P \overline{3} 2 / c 1$	$H \overline{3} 1 c$
				$R^{2} 3^{2 / n}$	
166	$D_{3 d}^{5}$	$R \overline{3} m$	$R \overline{3} 2 / m$	$R \overline{3} \quad 2 / m$	
				$3_{1,2} 2_{1} / b$	
167	$D_{3 d}^{6}$	$R \overline{3} c$	$R \overline{3} 2 / c$	$R \overline{3} \quad 2 / c$	
				$3_{1,2} 2_{1} / n$	

Example: B 2/b 11 (15, unique axis a)

$$
2_{1} / n
$$

The t subgroups of index [2] (type I) are $B 211(C 2) ; B b 11(C c)$; $B 1(P 1)$.
The k subgroups of index [2] (type IIa) are $P 2 / b 11(P 2 / c)$: $P 2_{1} / b 11\left(P 2_{1} / c\right) ; P 2 / n 11(P 2 / c) ; P 2_{1} / n 11\left(P 2_{1} / c\right)$.
Some subgroups of index [4] (not maximal) are $P 211(P 2)$; $P 2_{1} 11\left(P 2_{1}\right) ; P b 11(P c) ; P n 11(P c) ; P \overline{1} ; B 1(P 1)$.

HEXAGONAL SYSTEM

No. of space group		Hermann-Mauguin symbols for standard cell P			Triple cell H
		Short	Full	Extended	
168	C_{6}^{1}	P6			H6
169	C_{6}^{2}	$P 6_{1}$			H61
170	C_{6}^{3}	$P 6_{5}$			H_{6}
171	C_{6}^{4}	$P 6_{2}$			$\mathrm{H6}_{2}$
172	C_{6}^{5}	$P 64$			H_{6}
173	C_{6}^{6}	$\mathrm{P6}_{3}$			$\mathrm{H6}_{3}$
174	$C_{3 h}^{1}$	$P \overline{6}$			$H \overline{6}$
175	$C_{6 h}^{1}$	P6/m			H6/m
176	$C_{6 h}^{2}$	$P 63 / m$			$\mathrm{H6}_{3} / \mathrm{m}$
177	D_{6}^{1}	P622		P62 2	H622
				22_{1}	
178	D_{6}^{2}	$P 6122$		$P 6{ }_{1} 22$	H6122
				$2_{1} 2_{1}$	
179	D_{6}^{3}	P6522		$P 6522$	H6522
				2121	
180	D_{6}^{4}	$P 6222$		$P 6_{2} 22$	H6222
				2121	
181	D_{6}^{5}	P6422		P642 2	H6422
				2121	
182	D_{6}^{6}	$P 6322$		$P 6_{3} 22$	H6322
				22_{1}	
183	$C_{6 v}^{1}$	P6mm		P6mm	H6mm
				$b a$	
184	$C_{6 v}^{2}$	P6cc		P6cc	H6cc
				$n n$	
185	$C_{6 v}^{3}$	$\mathrm{P6}_{3} \mathrm{~cm}$		$\mathrm{P6}_{3} \mathrm{~cm}$	$\mathrm{H}_{3} \mathrm{mc}$
				na	
186	$C_{6 v}^{4}$	$P 6_{3} m \mathrm{c}$		$P 6{ }_{3} m c$	$\mathrm{H6}_{3} \mathrm{~cm}$
				$b n$	
187	$D_{3 h}^{1}$	$P \overline{6} m 2$		$P \overline{6} m 2$	$H \overline{6} 2 m$
				b 2_{1}	
188	$D_{3 h}^{2}$	$P \overline{6} c 2$		$P \overline{6} c 2$	$H \overline{6} 2 c$
				$n 2_{1}$	
189	$D_{3 h}^{3}$	$P \overline{6} 2 m$		$P \overline{6} 2 m$	$H \overline{6} m 2$
				- $1_{1} a$	
190	$D_{3 h}^{4}$	$P \overline{6} 2 c$		$P \overline{6} 2 \mathrm{c}$	$H \overline{6} c 2$
				21n	
191	$D_{6 h}^{1}$	P6/mmm	$P 6 / m 2 / m 2 / m$	P6/m 2/m 2/m	H6/mmm
				$22_{1} / b 2_{1} / a$	
192	$D_{6 h}^{2}$	P6/mcc	$P 6 / m 2 / c 2 / c$	P6/m 2/c 2/c	H6/mcc
				21/n $21 / n$	
193	$D_{6 h}^{3}$	$P 63 / \mathrm{mcm}$	$P 6{ }_{3} / \mathrm{m} 2 / \mathrm{c} 2 / \mathrm{m}$	$\begin{array}{r} P 6_{3} / m 2 / c 2 / m \\ 2_{1} / b 2_{1} / a \end{array}$	$\mathrm{H}_{3} / \mathrm{mmc}$
194	$D_{6 h}^{4}$	$P 6_{3} / \mathrm{mmc}$	$P 6{ }_{3} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{c}$	$P 6{ }_{3} / m 2 / m 2 / c$	$\mathrm{H} 6_{3} / \mathrm{mcm}$
				$2_{1} / b 2_{1} / n$	

4.3.3. Orthorhombic system

4.3.3.1. Historical note and arrangement of the tables

The synoptic table of $I T$ (1935) contained space-group symbols for the six orthorhombic 'settings', corresponding to the six permutations of the basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$. In $I T$ (1952), left-handed systems like c̄ba were changed to right-handed systems by reversing the orientation of the c axis, as in cba. Note that reversal

4.3. SYMBOLS FOR SPACE GROUPS

Table 4.3.2.1. Index of symbols for space groups for various settings and cells (cont.)

CUBIC SYSTEM

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols		
		Short	Full	Extended \dagger
195	T^{1}	P23		
196	T^{2}	$F 23$		$\begin{gathered} F 23 \\ 2 \\ 2_{1} \\ 2_{1} \end{gathered}$
197	T^{3}	I23		$\begin{gathered} I 23 \\ 2_{1} \end{gathered}$
198	T^{4}	P2, 3		
199	T^{5}	I2, 3		$\begin{gathered} I 2_{1} 3 \\ 2 \end{gathered}$
200	T_{h}^{1}	$P m \overline{3}$	$P 2 / m \overline{3}$	
201	T_{h}^{2}	Pn $\overline{3}$	$P 2 / n \overline{3}$	
202	T_{h}^{3}	$F m \overline{3}$	$F / 2 m \overline{3}$	$\begin{array}{\|c} F 2 / m \overline{3} \\ 2 / n \\ 2_{1} / e \\ 2_{1} / e \end{array}$
203	T_{h}^{4}	$F d \overline{3}$	$F 2 / d \overline{3}$	$\begin{array}{\|c} F 2 / d \overline{3} \\ 2 / d \\ 2_{1} / d \\ 2_{1} / d \end{array}$
204	T_{h}^{5}	Im $\overline{3}$	$I 2 / m \overline{3}$	$\begin{gathered} I 2 / m \overline{3} \\ 2_{1} / n \end{gathered}$
205	T_{h}^{6}	$P a \overline{3}$	$P 2_{1} / a \overline{3}$	
206	T_{h}^{7}	$I a \overline{3}$	$I 2{ }_{1} / a \overline{3}$	$\begin{aligned} & I 2_{1} / a \overline{3} \\ & 2 / b \end{aligned}$
207	O^{1}	P432		$\begin{array}{rr} P 432 \\ 22_{1} \end{array}$
208	O^{2}	$P 4232$		$\begin{array}{r} P 4_{2} 32 \\ 2{ }_{1} \end{array}$
209	O^{3}	$F 432$		$\left[\begin{array}{c} F 432 \\ 42 \\ 4_{2} 2_{1} \\ 4_{2} 2_{1} \end{array}\right.$
210	O^{4}	$F 4_{1} 32$		$\left\lvert\, \begin{array}{rl} F 4_{1} & 32 \\ 4_{1} & 2 \\ 4_{3} & 2 \\ 4_{3} & 2_{1} \end{array}\right.$
211	O^{5}	I432		$\begin{array}{cc} I 4 & 32 \\ 42 & 21 \end{array}$
212	O^{6}	$P 4_{3} 32$		$\begin{array}{rl} P 4_{3} & 32 \\ & 2_{1} \end{array}$
213	O^{7}	$P 4_{1} 32$		$\begin{array}{r} P 4_{1} 32 \\ 22_{1} \end{array}$
214	O^{8}	I4, 32		$\begin{array}{rr} I 4_{1} 32 \\ 4_{3} & 21 \end{array}$

CUBIC SYSTEM (cont.)

No. of space group	Schoenflies symbol	Hermann-Mauguin symbols		
		Short	Full	Extended \dagger
215	T_{d}^{1}	$P \overline{4} 3 m$		$P \overline{4} 3 m$
216	T_{d}^{2}	$F \overline{4} 3 m$		F $\stackrel{y}{4} 3 m^{g}$
				g
				g_{2}
				g_{2}
217	T_{d}^{3}	$I \overline{4} 3 \mathrm{~m}$		I $\overline{4} 3 \mathrm{~m}$
218	T_{d}^{4}	$P \overline{4} 3 n$		${ }^{-1}{ }^{\text {e }}$
				$P \overline{4} 3 n$
				c
219	T_{d}^{5}	$F \overline{4} 3 c$		$F \overline{4} 3 n$
				c
				g_{1}
				g_{1}
220	T_{d}^{6}	$I \overline{4} 3 d$		$I \overline{4} 3 \mathrm{~d}$
				d
221	O_{h}^{1}	$\operatorname{Pm} \overline{3} m$	$P 4 / m \overline{3} 2 / m$	$P 4 / m \overline{3} 2 / m$
				2 $2 / \mathrm{g}$
222	O_{h}^{2}	$P n \overline{3} n$	$P 4 / n \overline{3} 2 / n$	$P 4 / n \overline{3} 2 / n$
				2 $2_{1} / c$
223	O_{h}^{3}	$P m \overline{3} n$	$P 4_{2} / m \overline{3} 2 / n$	$P 4_{2} / m \overline{3} 2 / n$
224	O_{h}^{4}	$P n \overline{3} m$	$P 4_{2} / n \overline{3} 2 / m$	$P 4_{2} / n \overline{3} 2 / m$
225	O_{h}^{5}	$F m \overline{3} m$	$F 4 / m \overline{3} 2 / m$	$F 4 / m \overline{3} 2 / m$
				$4 / n \quad 2 / g$
				$4_{2} / e \quad 21 / g_{2}$
				$42 / e \quad 21 / g_{2}$
226	O_{h}^{6}	$F m \overline{3} c$	$F 4 / m \overline{3} 2 / c$	$F 4 / m \overline{3} 2 / n$
				$4 / n \quad 2 / c$
				$4_{2} / e \quad 2 / L_{1}$
				$4{ }_{2} / e \quad 21 / g_{1}$
227	O_{h}^{7}	$F d \overline{3} m$	$F 4_{1} / d \overline{3} 2 / m$	$F 4_{1} / d \overline{3} 2 / m$
				$4_{1} / d 2 / g$
				$4_{3} / d \quad 21 / g_{2}$
				$4_{3} / d 2_{1} / g_{2}$
228	O_{h}^{8}	$F d \overline{3} c$	$F 4_{1} / d \overline{3} 2 / c$	$F 4_{1} / d \overline{3} 2 / n$
				$44_{1} / d 2 / c$
				$4_{3} / d 2_{1} / g_{1}$
				$4_{3} / d 2_{1} / g_{1}$
229	O_{h}^{9}	$\operatorname{Im} \overline{3} m$	$I 4 / m \overline{3} 2 / m$	$I 4 / m \overline{3} 2 / m$
				$42 / n 2_{1} / e$
230	O_{h}^{10}	$I a \overline{3} d$	$I 4_{1} / a \overline{3} 2 / d$	$I 4_{1} / a \overline{3} 2 / d$
				$43 / b \quad 2 / d$

\dagger Axes 3_{1} and 3_{2} parallel to axes 3 are not indicated in the extended symbols: $c f$. Chapter 4.1. For the glide-plane symbol ' e ', see the Foreword to the Fourth Edition (IT 1995) and Section 1.3.2, Note (x).
Note: The glide planes g, g_{1} and g_{2} have the glide components $g\left(\frac{1}{2}, \frac{1}{2}, 0\right), g_{1}\left(\frac{1}{4}, \frac{1}{4}, 0\right)$ and $g_{2}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$.
of two axes does not change the handedness of a coordinate system, so that the settings $\overline{\mathbf{c}} \mathbf{b a}$, cb̄a, cbā and $\overline{\mathbf{c}} \overline{\bar{a}} \overline{\mathrm{a}}$ are equivalent in this respect. The tabulation thus deals with the $6 \times 4=24$ possible right-handed settings. For further details see Section 2.2.6.4.

An important innovation of $I T$ (1952) was the introduction of extended symbols for the centred groups A, B, C, I, F. These
symbols are systematically developed in Table 4.3.2.1. Settings which permute the two axes \mathbf{a} and \mathbf{b} are listed side by side so that the two C settings appear together, followed by the two A and the two B settings.

In crystal classes $m m 2$ and 222, the last symmetry element is the product of the first two and thus is not independent. It was omitted in

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

the short Hermann-Mauguin symbols of $I T(1935)$ for all space groups of class $m m 2$, but was restored in $I T$ (1952). In space groups of class 222, the last symmetry element cannot be omitted (see examples below).

For the new 'double' glide plane symbol ' e ', see the Foreword to the Fourth Edition (IT 1995) and Section 1.3.2, Note (x).

4.3.3.2. Group-subgroup relations

The present section emphasizes the use of the extended and full symbols for the derivation of maximal subgroups of types I and IIa; maximal orthorhombic subgroups of types IIb and IIc cannot be recognized by inspection of the synoptic Table 4.3.2.1.

4.3.3.2.1. Maximal non-isomorphic k subgroups of type IIa (decentred)

(i) Extended symbols of centred groups A, B, C, I

By convention, the second line of the extended space-group symbol is the result of the multiplication of the first line by the centring translation (cf. Table 4.1.2.3). As a consequence, the product of any two terms in one line is equal to the product of the corresponding two terms in the other line.
(a) Class 222

The extended symbol of $I 222$ (23) is $I 222$; the twofold axes

$$
2_{1} 2_{1} 2_{1}
$$

intersect and one obtains $2_{x} \times 2_{y}=2_{z}=2_{1 x} \times 2_{1 y}$.
Maximal k subgroups are $P 222$ and $P 2_{1} 2_{1} 2$ (plus permutations) but not $P 2_{1} 2_{1} 2_{1}$.
The extended symbol of $I 2_{1} 2_{1} 2_{1}(24)$ is $I 2_{1} 2_{1} 2_{1}$, where one 222
obtains $2_{1 x} \times 2_{1 y}=2_{1 z}=2_{x} \times 2_{y}$; the twofold axes do not intersect. Thus, maximal non-isomorphic k subgroups are $P 2_{1} 2_{1} 2_{1}$ and $P 222_{1}$ (plus permutations), but not $P 222$.
(b) Class mm 2

The extended symbol of Aea2 (41) is Aba2; the following cn2 ${ }_{1}$
relations hold: $b \times a=2=c \times n$ and $b \times n=2_{1}=c \times a$. Maximal k subgroups are Pba2; Pcn2 (Pnc2); Pbn21 $\left(P n a 2_{1}\right)$; Pca ${ }_{1}$.
(c) Class mmm

By convention, the first line of the extended symbol contains those symmetry elements for which the coordinate triplets are explicitly printed under Positions. From the two-line symbols, as defined in the example below, one reads not only the eight maximal k subgroups P of class mmm but also the location of their centres of symmetry, by applying the following rules:
If in the symbol of the P subgroup the number of symmetry planes, chosen from the first line of the extended symbol, is odd (three or one), the symmetry centre is at $0,0,0$; if it is even (two or zero), the symmetry centre is at $\frac{1}{4}, \frac{1}{4}, 0$ for the subgroups of C groups and at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ for the subgroups of I groups (Bertaut, 1976).

Examples

(1) According to these rules, the extended symbol of Cmce (64) is Cmcb (see above). The four k subgroups with symmetry centres bna
at 0, 0,0 are Pmcb (Pbam); Pmna; Pbca; Pbnb (Pccn); those with symmetry centres at $\frac{1}{4}, \frac{1}{4}, 0$ are Pbna (Pbcn); Pmca
(Pbcm); Pmnb (Pnma); Pbcb (Pcca). These rules can easily be transposed to other settings.
(2) The extended symbol of Ibam (72) is Ibam. The four subgroups ccn
with symmetry centre at $0,0,0$ are Pbam; Pbcn; Pcan (Pbcn); Pccm;
those with symmetry centre at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ are Pccn; Pcam (Pbcm); Pbcm; Pban.
(ii) Extended symbols of F-centred space groups

Maximal k subgroups of the groups F222, Fmm 2 and $F m m m$ are C, A and B groups. The corresponding centring translations are $w=t\left(\frac{1}{2}, \frac{1}{2}, 0\right), u=t\left(0, \frac{1}{2}, \frac{1}{2}\right)$ and $v=w \times u=t\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

The (four-line) extended symbols of these groups can be obtained from the following scheme:

	$F 222(22)$	Fmm2 (42)	Fmmm (69)
1	222	$m m 2$	mmm
w	$2_{1} 2_{1} 2^{w}$	$b a 2^{w}$	ban
u	$2^{u} 2^{v} 2_{1}$	$n c 2_{1}$	$n c b$
v	$2_{1}^{u} 2^{v} 2_{1}^{w}$	$c n 2_{1}^{w}$	$c n a$

The second, third, and fourth lines are the result of the multiplication of the first line by the centring translations w, u and v, respectively.

The following abbreviations are used:

$$
2_{z}^{w}=w \times 2_{z} ; \quad 2_{1 z}^{w}=w \times 2_{1 z} ; \text { etc. }
$$

For the location of the symmetry elements in the above scheme, see Table 4.1.2.3. In Table 4.3.2.1, the centring translations and the superscripts u, v, w have been omitted. The first two lines of the scheme represent the extended symbols of C222, Сmm 2 and Cmmm. An interchange of the symmetry elements in the first two lines does not change the group. To obtain further maximal C subgroups, one has to replace symmetry elements of the first line by corresponding elements of the third or fourth line. Note that the symbol ' e ' is not used in the four-line symbols for Fmm2 and Fmmm in order to keep the above scheme transparent.

Examples

(1) F222 (22). In the first line replace 2_{x} by 2_{x}^{u} (third line, same column) and keep 2_{y}. Complete the first line by the product $2_{x}^{u} \times 2_{y}=2_{1 z}$ and obtain the maximal C subgroup $C 2^{u} 22_{1}$.

Similarly, in the first line keep 2_{x} and replace 2_{y} with 2_{y}^{v} (fourth line, same column). Complete the first line by the product $2_{x} \times 2_{y}^{v}=2_{1 z}$ and obtain the maximal C subgroup $C 22^{v} 2_{1}$.

Finally, replace 2_{x} and 2_{y} by 2_{x}^{u} and 2_{y}^{v} and form the product $2_{x}^{u} \times 2_{y}^{v}=2_{z}^{w}$, to obtain the maximal C subgroup $C 2^{u} 2^{v} 2^{w}$ (where 2^{w} can be replaced by 2). Note that $C 222$ and $C 2^{u} 2^{v} 2$ are two different subgroups, as are $C 2^{u} 22_{1}$ and $C 22^{\nu} 2_{1}$.
(2) Fmm 2 (42). A similar procedure leads to the four maximal k subgroups Cmm2; Cmc2 ${ }_{1} ; C c m 2_{1}^{w}\left(C m c 2_{1}\right)$; and $C c c 2$.
(3) $F m m m$ (69). One finds successively the eight maximal k subgroups Cmmт; Cmma; Cmст; Ccmm (Cmст); Cmса; Сста (Стса); Ссст; and Ссса.

Maximal A - and B-centred subgroups can be obtained from the C subgroups by simple symmetry arguments.

In space groups $F d d 2$ (43) and $F d d d$ (70), the nature of the d planes is not altered by the translations of the F lattice; for this reason, a two-line symbol for $F d d 2$ and a one-line symbol for $F d d d$ are sufficient. There exist no maximal non-isomorphic k subgroups for these two groups.

4.3. SYMBOLS FOR SPACE GROUPS

4.3.3.2.2. Maximal t subgroups of type I

(i) Orthorhombic subgroups

The standard full symbol of a P group of class mmm indicates all the symmetry elements, so that maximal t subgroups can be read at once.

Example

$P 2_{1} / m 2 / m 2 / a(51)$ has the following four t subgroups: $P 2_{1} 22\left(P 222_{1}\right) ;$ Pmm2; P2 ${ }_{1} m a\left(P m c 2_{1}\right) ; ~ P m 2 a(P m a 2)$.
From the standard full symbol of an I group of class $m m m$, the t subgroup of class 222 is read directly. It is either $I 222$ [for Immm (71) and Ibam (72)] or I2 $22_{1} 2_{1}$ [for Ibca (73) and Imma (74)]. Use of the two-line symbols results in three maximal t subgroups of class mm2.
Example
Ibam (72) has the following three maximal t subgroups of ccn
class $m m 2$: Iba2; Ib2 ${ }_{1} m$ (Ima2); I2 ${ }_{1} a m$ (Ima2).
From the standard full symbol of a C group of class $m m m$, one immediately reads the maximal t subgroup of class 222 , which is either $C 222_{1}$ [for Cmcm (63) and Cmce (64)] or C222 (for all other cases). For the three maximal t subgroups of class $m m 2$, the two-line symbols are used.

Example

Cmce (64) has the following three maximal t subgroups of bna
class mm2: Cmc_{1}; Cm2e (Aem2); C2ce (Aea2).
Finally, Fmmm (69) has maximal t subgroups $F 222$ and $F m m 2$ (plus permutations), whereas $F d d d$ (70) has $F 222$ and $F d d 2$ (plus permutations).

(ii) Monoclinic subgroups

These subgroups are obtained by substituting the symbol ' 1 ' in two of the three positions. Non-standard centred cells are reduced to primitive cells.

Examples

(1) $C 222_{1}$ (20) has the maximal t subgroups $C 211$ (C2), $C 121$ (C2) and $C 112_{1}$. The last one reduces to $P 112_{1}\left(P 2_{1}\right)$.
(2) Ama2 (40) has the maximal t subgroups Am11, reducible to Pm, $A 1 a 1(C c)$ and $A 112(C 2)$.
(3) Pnma (62) has the standard full symbol $P 2_{1} / n 2_{1} / m 2_{1} / a$, from which the maximal t subgroups $P 2_{1} / n 11\left(P 2_{1} / c\right)$, $P 12_{1} / m 1\left(P 2_{1} / m\right)$ and $P 112_{1} / a\left(P 2_{1} / c\right)$ are obtained.
(4) $F d d d$ (70) has the maximal t subgroups $F 2 / d 11, F 12 / d 1$ and $F 112 / d$, each one reducible to $C 2 / c$.

4.3.4. Tetragonal system

4.3.4.1. Historical note and arrangement of the tables

In the 1935 edition of International Tables, for each tetragonal P and I space group an additional C-cell and F-cell description was given. In the corresponding space-group symbols, secondary and tertiary symmetry elements were simply interchanged. Coordinate triplets for these larger cells were not printed, except for the space groups of class $\overline{4} m 2$. In $I T$ (1952), the C and F cells were dropped from the space-group tables but kept in the comparative tables.

In the present edition, the C and F cells reappear in the sub- and supergroup tabulations of Part 7, as well as in the synoptic Table 4.3.2.1, where short and extended (two-line) symbols are given for P and C cells, as well as for I and F cells.

4.3.4.2. Relations between symmetry elements

In the crystal classes $42(2), 4 m(m), \overline{4} 2(m)$ or $\overline{4} m(2)$, $4 / m 2 / m(2 / m)$, where the tertiary symmetry elements are between parentheses, one finds

$$
4 \times m=(m)=\overline{4} \times 2 ; 4 \times 2=(2)=\overline{4} \times m
$$

Analogous relations hold for the space groups. In order to have the symmetry direction of the tertiary symmetry elements along [110] (cf. Table 2.2.4.1), one has to choose the primary and secondary symmetry elements in the product rule along [001] and [010].

Example

In $P 4_{1} 2(2)(91)$, one has $4_{1} \times 2=(2)$ so that $P 4_{1} 2$ would be the short symbol. In fact, in $I T$ (1935), the tertiary symmetry element was suppressed for all groups of class 422, but re-established in IT (1952), the main reason being the generation of the fourfold rotation as the product of the secondary and tertiary symmetry operations: $4=(m) \times m$ etc.

4.3.4.3. Additional symmetry elements

As a result of periodicity, in all space groups of classes 422, $\overline{4} m 2$ and $4 / m 2 / m 2 / m$, the two tertiary diagonal axes 2, along [110] and [110], alternate with axes 2_{1}, the screw component being $\frac{1}{2}, \mp \frac{1}{2}, 0$ (cf. Table 4.1.2.2).
Likewise, tertiary diagonal mirrors m in x, x, z and x, \bar{x}, z in space groups of classes $4 m m, 42 m$ and $4 / m 2 / m 2 / m$ alternate with glide planes called g,* the glide components being $\frac{1}{2}, \pm \frac{1}{2}, 0$. The same glide components produce also an alternation of diagonal glide planes c and n ($c f$. Table 4.1.2.2).

4.3.4.4. Multiple cells

The transformations from the P to the two C cells, or from the I to the two F cells, are

$$
\begin{array}{clll}
C_{1} \text { or } F_{1}:(\text { i }) & \mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b}, & \mathbf{b}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c} \\
C_{2} \text { or } F_{2}:(\text { ii }) & \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c}
\end{array}
$$

(cf. Fig. 5.1.3.5). The secondary and tertiary symmetry directions are interchanged in the double cells. It is important to know how primary, secondary and tertiary symmetry elements change in the new cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

(i) Primary symmetry elements

In P groups, only two kinds of planes, m and n, occur perpendicular to the fourfold axis: a and b planes are forbidden. A plane m in the P cell corresponds to a plane in the C cell which has the character of both a mirror plane m and a glide plane n. This is due to the centring translation $\frac{1}{2}, \frac{1}{2}, 0$ ($c f$. Chapter 4.1). Thus, the C-cell description shows \dagger that $P 4 / m$.. (cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$) has two maximal k subgroups of index [2], $P 4 / m$.. and $P 4 / n$.. (cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$), originating from the decentring of the C cell. The same reasoning is valid for $P 4_{2} / m \ldots$

A glide plane n in the P cell is associated with glide planes a and b in the C cell. Since such planes do not exist in tetragonal P groups, the C cell cannot be decentred, i.e. $P 4 / n$.. and $P 4_{2} / n$.. have no k subgroups of index [2] and cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

Glide planes a perpendicular to conly occur in $I 4_{1} / a$ (88) and groups containing $I 4_{1} / a\left[I 4_{1} /\right.$ amd (141) and $I 4_{1} /$ acd (142)]; they are associated with d planes in the F cell. These groups cannot be decentred, i.e. they have no P subgroups at all.

[^0]
[^0]: * For other g planes see (ii), Secondary symmetry elements.
 \dagger In this section, a dot stands for a symmetry element to be inserted in the corresponding position of the space-group symbol.

